Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ann Plast Surg ; 91(1): 154-158, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37450875

ABSTRACT

BACKGROUND: Nonvascularized bone grafting represents a practical method of mandibular reconstruction. However, the destructive effects of radiotherapy on native bone preclude the use of nonvascularized bone grafts in head and neck cancer patients. Adipose-derived stem cells have been shown to enhance bone healing and regeneration in numerous experimental models. The purpose of this study was to determine the impact of adipose-derived stem cells on nonvascularized bone graft incorporation in a murine model of irradiated mandibular reconstruction. METHODS: Thirty isogenic rats were randomly divided into 3 groups: nonvascularized bone graft (control), radiation with nonvascularized bone graft (XRT), and radiation with nonvascularized bone graft and adipose-derived stem cells (ASC). Excluding the control group, all rats received a human-equivalent dose of radiation. All groups underwent mandibular reconstruction of a critical-sized defect with a nonvascularized bone graft from the contralateral hemimandible. After a 60-day recovery period, graft incorporation and bone mineralization were compared between groups. RESULTS: Compared with the control group, the XRT group demonstrated significantly decreased graft incorporation (P = 0.011), bone mineral density (P = 0.005), and bone volume fraction (P = 0.001). Compared with the XRT group, the ASC group achieved a significantly increased graft incorporation (P = 0.006), bone mineral density (P = 0.005), and bone volume fraction (P = 0.013). No significant differences were identified between the control and ASC groups. CONCLUSIONS: Adipose-derived stem cells enhance nonvascularized bone graft incorporation in the setting of human-equivalent radiation.


Subject(s)
Bone Transplantation , Mandible , Humans , Mice , Rats , Animals , Disease Models, Animal , Bone Transplantation/methods , Mandible/surgery , Adipocytes , Stem Cells
2.
Ann Plast Surg ; 89(4): 459-464, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36149985

ABSTRACT

BACKGROUND: Mesenchymal stem cells have immense potential in applications of bone healing and regeneration. However, few studies have evaluated the therapeutic efficacy of adipose-derived stem cells (ASCs) and bone marrow stromal cells (BMSCs) in irradiated bone. The purpose of this study is to compare the ability of ASCs versus BMSCs to enhance healing outcomes in a murine model of irradiated mandibular fracture repair. METHODS: Forty-eight isogenic male Lewis rats underwent radiation therapy followed by mandibular osteotomy with intraoperative placement of either ASCs or BMSCs. Animals were killed on postoperative day 40. Mandibles were analyzed for union rate, biomechanical strength, vascularity, and mineralization. Groups were compared at P < 0.05 significance. RESULTS: The ASC and BMSC groups demonstrated 92% and 75% union rates. Compared with the BMSC group, the ASC group demonstrated a trending increase in maximum load ( P = 0.095) on biomechanical strength analysis and a significant increase in vessel number ( P = 0.001), vessel thickness ( P = 0.035), and vessel volume fraction ( P = 0.007) on micro-computed tomography angiography analysis. No significant differences in bone mineralization were identified on micro-computed tomography analysis. CONCLUSION: This study demonstrates the superior therapeutic efficacy of ASCs over BMSCs in irradiated fracture healing as evidenced by union rate, vascular morphometry, and a trend in biomechanical strength. We posit that the robust vascular response induced by ASCs better recapitulates the sequence and synchronicity of physiologic bone healing compared with BMSCs, thereby improving the reliability of irradiated fracture repair.


Subject(s)
Mandibular Fractures , Mesenchymal Stem Cells , Adipose Tissue , Animals , Bone Marrow Cells , Male , Mesenchymal Stem Cells/physiology , Mice , Rats , Rats, Inbred Lew , Reproducibility of Results , Stem Cells , Stromal Cells , X-Ray Microtomography
3.
Plast Reconstr Surg ; 147(4): 865-874, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33760575

ABSTRACT

BACKGROUND: Cell-based treatments have demonstrated the capacity to enhance reconstructive outcomes in recent decades but are hindered in clinical utility by regulatory hurdles surrounding cell culture. This investigation examines the ability of a noncultured stromal vascular fraction derived from lipoaspirate to enhance bone healing during fracture repair to further the development of translatable cell therapies that may improve outcomes in irradiated reconstruction. METHODS: Isogenic male Lewis rats were divided into three groups: fracture, irradiated fracture, and irradiated fracture with stromal vascular fraction treatment. Irradiated groups received a fractioned dose of 35 Gy before mandibular osteotomy. Stromal vascular fraction was harvested from the inguinal fat of isogenic donors, centrifuged, and placed intraoperatively into the osteotomy site. All mandibles were evaluated for bony union and vascularity using micro-computed tomography before histologic analysis. RESULTS: Union rates were significantly improved in the irradiated fracture with stromal vascular fraction treatment group (82 percent) compared to the irradiated fracture group (25 percent) and were not statistically different from the fracture group (100 percent). Stromal vascular fraction therapy significantly improved all metrics of bone vascularization compared to the irradiated fracture group and was not statistically different from fracture. Osteocyte proliferation and mature bone formation were significantly reduced in the irradiated fracture group. Bone cellularity and maturity were restored to nonirradiated levels in the irradiated fracture with stromal vascular fraction treatment group despite preoperative irradiation. CONCLUSIONS: Vascular and cellular depletion represent principal obstacles in the reconstruction of irradiated bone. This study demonstrates the efficacy of stromal vascular fraction therapy in remediating these damaging effects and provides a promising foundation for future studies aimed at developing noncultured, cell-based therapies for clinical implementation.


Subject(s)
Adipose Tissue/cytology , Cell Extracts/therapeutic use , Fracture Healing , Intraoperative Care/methods , Mandible/radiation effects , Mandibular Fractures/therapy , Animals , Combined Modality Therapy , Male , Mandibular Fractures/surgery , Rats , Rats, Inbred Lew , Treatment Outcome
4.
Ann Plast Surg ; 85(5): 546-552, 2020 11.
Article in English | MEDLINE | ID: mdl-32187064

ABSTRACT

BACKGROUND: Radiation therapy (XRT) induced dermal injury disrupts type I collagen architecture. This impairs cutaneous viscoelasticity, which may contribute to the high rate of complications in expander-based breast reconstruction with adjuvant XRT. The objective of this study was to further elucidate the mechanism of radiation-induced dermal injury and to determine if amifostine (AMF) or deferoxamine (DFO) mitigates type I collagen injury in an irradiated murine model of expander-based breast reconstruction. METHODS: Female Lewis rats (n = 20) were grouped: expander (control), expander-XRT (XRT), expander-XRT-AMF (AMF), and expander-XRT-DFO (DFO). Expanders were surgically placed. All XRT groups received 28 Gy of XRT. The AMF group received AMF 30 minutes before XRT, and the DFO group used a patch for delivery 5 days post-XRT. After a 20-day recovery period, skin was harvested. Atomic force microscopy and Raman spectroscopy were performed to evaluate type I collagen sheet organization and tissue compositional properties, respectively. RESULTS: Type I collagen fibril disorganization was significantly increased in the XRT group compared with the control (83.8% vs 22.4%; P = 0.001). Collagen/matrix ratios were greatly reduced in the XRT group compared with the control group (0.49 ± 0.09 vs 0.66 ± 0.09; P = 0.017). Prophylactic AMF demonstrated a marked reduction in type I collagen fibril disorganization on atomic force microscopy (15.9% vs 83.8%; P = 0.001). In fact, AMF normalized type I collagen organization in irradiated tissues to the level of the nonirradiated control (P = 0.122). Based on Raman spectroscopy, both AMF and DFO demonstrated significant differential protective effects on expanded-irradiated tissues. Collagen/matrix ratios were significantly preserved in the AMF group compared with the XRT group (0.49 ± 0.09 vs 0.69 ± 0.10; P = 0.010). ß-Sheet/α-helix ratios were significantly increased in the DFO group compared with the XRT group (1.76 ± 0.03 vs 1.86 ± 0.06; P = 0.038). CONCLUSIONS: Amifostine resulted in a significant improvement in type I collagen fibril organization and collagen synthesis, whereas DFO mitigated abnormal changes in collagen secondary structure in an irradiated murine model of expander-based breast reconstruction. These therapeutics offer the ability to retain the native microarchitecture of type I collagen after radiation. Amifostine and DFO may offer clinical utility to reduce radiation induced dermal injury, potentially decreasing the high complication rate of expander-based breast reconstruction with adjuvant XRT and improving surgical outcomes.


Subject(s)
Breast Neoplasms , Mammaplasty , Radiation-Protective Agents , Animals , Disease Models, Animal , Female , Humans , Mice , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Tissue Expansion Devices
5.
Ann Plast Surg ; 85(1): 83-88, 2020 07.
Article in English | MEDLINE | ID: mdl-32187072

ABSTRACT

Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.


Subject(s)
Adipocytes , Fracture Healing , Adipose Tissue , Animals , Cells, Cultured , Rats , Rats, Inbred Lew , Stem Cells
6.
Ann Plast Surg ; 85(4): 424-429, 2020 10.
Article in English | MEDLINE | ID: mdl-31850964

ABSTRACT

BACKGROUND: Indications for adjuvant radiation therapy (XRT) in breast cancer have expanded. Although highly effective, XRT damages surrounding tissues and vasculature, often resulting in delayed or compromised breast reconstruction. Thus, effective yet safe methods of radiation injury prophylaxis would be desirable. Amifostine is a Food and Drug Administration-approved radioprotectant; however, concerns about its potential to also protect cancer remain. The purpose of this study was to evaluate the oncologic safety of amifostine (AMF) in vitro and determine its effect on human breast cancer cells in the setting of XRT. METHODS: One ER+/PR+/Her2- (MCF-7) and two ER-/PR-Her2- (MDA-MB-231, MDA-MB-468) breast cancer cell lines were investigated. Female fibroblasts were used as controls. Cells were treated with WR-1065, the active metabolite of AMF, 20 minutes before 0Gy, 10Gy, or 20Gy XRT. Live and dead cells were quantified; percent cell death was calculated. RESULTS: WR-1065 treatment significantly preserved viability and reduced healthy female fibroblasts death after XRT compared with untreated controls. All three breast cancer cells lines exhibited radiosensitivity with substantial cell death. Cancer cells retained their radiosensitivity despite WR-1065 pretreatment, achieving the same degree of cell death as untreated controls. CONCLUSIONS: This study demonstrated the proficiency of AMF to selectively protect healthy cells from XRT while breast cancer cells remained radiosensitive. These results support the oncologic safety of AMF in breast cancer in vitro. Further investigation is now warranted in vivo to ascertain the translational potential of using AMF as a radioprotectant to improve breast reconstruction after radiation treatment.


Subject(s)
Amifostine , Breast Neoplasms , Mammaplasty , Radiation Injuries , Radiation-Protective Agents , Amifostine/pharmacology , Amifostine/therapeutic use , Animals , Breast Neoplasms/radiotherapy , Female , Humans , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Rats , Rats, Sprague-Dawley
7.
Plast Reconstr Surg ; 143(6): 1666-1676, 2019 06.
Article in English | MEDLINE | ID: mdl-30907808

ABSTRACT

BACKGROUND: Radiotherapy plays an essential role in the oncologic management of breast cancer. However, patients who undergo radiotherapy experience significantly more wound complications during the reconstructive process. Deferoxamine has immense potential to up-regulate angiogenesis and improve reconstructive outcomes. The purpose of this study was to determine the impact of deferoxamine on breast cancer cell proliferation in vitro, to delineate oncologic safety concerns regarding the use of deferoxamine as a regenerative therapeutic. METHODS: The dose-dependent effect of radiation and deferoxamine on two triple-negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) was determined by means of MTS (percentage cell viability) and tumorsphere (sphere number) analysis. Radiation therapy and deferoxamine were delivered both individually and in combination, and all experiments were completed in triplicate. Intracellular iron, nuclear factor-κB localization, and apoptosis/necrosis assays were performed to delineate mechanism. Analysis of variance statistical analysis was performed using SPSS (p < 0.05). RESULTS: For both cell lines, percentage viability and sphere number significantly decreased following exposure to 10 Gy of radiation. Surprisingly, the administration of 25 µM deferoxamine also significantly decreased each metric. The administration of deferoxamine (100 µM) in combination with radiation (10 Gy) resulted in significantly reduced percentage viability and sphere number compared with the administration of radiation alone. Deferoxamine treatment decreased intracellular iron, suppressed nuclear factor-κB activation, and induced apoptosis. CONCLUSION: Radiation and deferoxamine significantly decrease breast cancer proliferation when delivered independently and in combination, suggesting deferoxamine may be safely used to facilitate improved reconstructive outcomes among triple-negative breast cancer survivors. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Deferoxamine/pharmacology , Iron/metabolism , Triple Negative Breast Neoplasms/drug therapy , Analysis of Variance , Apoptosis/radiation effects , Cell Line, Tumor/drug effects , Cell Line, Tumor/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Female , Humans , Imaging, Three-Dimensional , Radiation Dosage , Sensitivity and Specificity , Triple Negative Breast Neoplasms/radiotherapy
8.
J Craniofac Surg ; 30(2): 611-617, 2019.
Article in English | MEDLINE | ID: mdl-30531286

ABSTRACT

Nonvascularized bone grafts (NBGs) represent a practical method of mandibular reconstruction that is precluded in head and neck cancer patients by the destructive effects of radiotherapy. Advances in tissue-engineering may restore NBGs as a viable surgical technique, but expeditious translation demands a small-animal model that approximates clinical practice. This study establishes a murine model of irradiated mandibular reconstruction using a segmental iliac crest NBG for the investigation of imperative bone healing strategies. Twenty-seven male isogenic Lewis rats were divided into 2 groups; control bone graft and irradiated bone graft (XBG). Additional Lewis rats served as graft donors. The XBG group was administered a fractionated dose of 35Gy. All rats underwent reconstruction of a segmental, critical-sized defect of the left hemi-mandible with a 5 mm NBG from the iliac crest, secured by a custom radiolucent plate. Following a 60-day recovery period, hemi-mandibles were evaluated for bony union, bone mineralization, and biomechanical strength (P < 0.05). Bony union rates were significantly reduced in the XBG group (42%) compared with controls (80%). Mandibles in the XBG group further demonstrated substantial radiation injury through significant reductions in all metrics of bone mineralization and biomechanical strength. These observations are consistent with the clinical sequelae of radiotherapy that limit NBGs to nonirradiated patients. This investigation provides a clinically relevant, quantitative model in which innovations in tissue engineering may be evaluated in the setting of radiotherapy to ultimately provide the advantages of NBGs to head and neck cancer patients and reconstructive surgeons.


Subject(s)
Bone Transplantation/methods , Mandible/surgery , Plastic Surgery Procedures/methods , Animals , Calcification, Physiologic , Disease Models, Animal , Head and Neck Neoplasms/surgery , Male , Rats
9.
Ann Plast Surg ; 81(5): 604-608, 2018 11.
Article in English | MEDLINE | ID: mdl-30113984

ABSTRACT

BACKGROUND: Breast cancer is most commonly managed with a combination of tumor ablation, radiation, and/or chemotherapy. Despite the oncologic benefit of these treatments, the detrimental effect of radiation on surrounding tissue challenges the attainment of ideal breast reconstruction outcomes. The purpose of this study was to determine the ability of topical deferoxamine (DFO) to reduce cutaneous ulceration and collagen disorganization following radiotherapy in a murine model of expander-based breast reconstruction. METHODS: Female Sprague-Dawley rats (n = 15) were divided into 3 groups: control (expander), XRT (expander + radiation), and DFO (expander + radiation + deferoxamine [DFO]). Expanders were placed in a submusculocutaneous plane in the right upper back and ultimately filled to 15 mL. Radiation was administered via a fractionated dose of 28 Gy. Deferoxamine was delivered topically for 10 days following radiation. After a 20-day recovery period, skin ulceration and dermal type I collagen organization were analyzed. RESULTS: Compared with control, the XRT group demonstrated a significant increase in skin ulceration (3.7% vs 43.3%, P = 0.00) and collagen fibril disorganization (26.3% vs 81.8%, P = 0.00). Compared with the XRT group, treatment with topical DFO resulted in a significant reduction in ulceration (43.3% vs 7.0%, P = 0.00) and fibril disorganization (81.8% vs 15.3%, P = 0.00). There were no statistical differences between the control and DFO groups in skin ulceration or collagen disorganization. CONCLUSIONS: This study suggests topical DFO is capable of reducing skin ulceration and type I collagen fibril disorganization following radiotherapy. This novel application of DFO has potential to enhance expander-based breast reconstruction outcomes and improve quality of life for women suffering the devastating effects of breast cancer.


Subject(s)
Back , Deferoxamine , Skin , Animals , Female , Rats , Administration, Topical , Back/surgery , Deferoxamine/administration & dosage , Deferoxamine/pharmacology , Disease Models, Animal , Microscopy, Atomic Force , Random Allocation , Rats, Sprague-Dawley , Skin/drug effects , Skin/radiation effects , Tissue Expansion Devices
10.
J Oral Maxillofac Surg ; 76(12): 2660-2668, 2018 12.
Article in English | MEDLINE | ID: mdl-29883588

ABSTRACT

PURPOSE: Despite the relative surgical ease and reduced donor-site morbidity of distraction osteogenesis (DO) in comparison with free tissue transfer, DO is currently precluded as a reconstructive option for head and neck cancer (HNC) patients because of the destructive effects of radiotherapy (XRT). This study investigates the ability of a novel combined therapy (CT) of radioprotective amifostine (AMF) and angiogenic deferoxamine (DFO) to mitigate XRT-induced bone injury in a murine model of DO. MATERIALS AND METHODS: Thirty male Sprague-Dawley rats were divided into 5 groups: DO (primary control), XRT (secondary control), AMF, DFO, and CT. With the exclusion of the DO group, all rats were administered a fractionated, human-equivalent XRT dose of 35 Gy, comparable with 70 Gy administered to HNC patients clinically. All groups underwent mandibular osteotomy and distraction to 5.1 mm. After euthanasia administration on postoperative day 40, the mandibles were sectioned and stained with Gomori trichrome. Osteocyte number, bone volume, and osteoid volume were compared between all groups by analysis of variance (P < .05). RESULTS: All rats survived and were included in the final analysis. The XRT group exhibited substantial bone injury, evidenced by a decreased osteocyte number and bone volume, as well as an increase in immature osteoid volume, compared with DO controls. The AMF, DFO, and CT groups showed significant increases in osteocyte proliferation compared with the XRT group and were not statistically different from the DO group. Notably, the CT group showed remediation of XRT-induced impairment of bone maturation and exhibited significantly greater bone volume and reduced osteoid volume in comparison with all groups. CONCLUSIONS: Combined AMF and DFO treatment showed the capacity to remediate the deleterious effects of XRT, restore cellularity to nonirradiated levels, and surpass all groups in mature bone formation. Although further investigations of AMF and DFO are warranted, this study provides preliminary support for the potential use of DO in HNC patients through pharmaceutical facilitation of irradiated bone healing.


Subject(s)
Amifostine/therapeutic use , Deferoxamine/therapeutic use , Mandible/drug effects , Osteogenesis, Distraction , Radiation Injuries/prevention & control , Radiation-Protective Agents/therapeutic use , Amifostine/pharmacology , Animals , Deferoxamine/pharmacology , Drug Therapy, Combination , Male , Mandible/pathology , Mandible/radiation effects , Mandible/surgery , Radiation Injuries/pathology , Radiation-Protective Agents/pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Treatment Outcome
11.
J Craniofac Surg ; 28(4): 915-919, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28207468

ABSTRACT

Inattention to differences between animal strains is a potential cause of irreproducibility of basic science investigations. Accordingly, the authors' laboratory sought to ensure that cross-comparisons of results generated from studies of mandibular physiology utilizing the Sprague Dawley and Lewis rat strains are valid. The authors specifically investigated baseline histomorphometrics, bone mineral density, and biomechanical strength of the unaltered endogenous mandibles of the inbred, isogenic Lewis rat, and the outbred, nonisogenic Sprague Dawley rat to determine if they are indeed equal. The authors hypothesized that little difference would be found within these metrics.The authors' study utilized 20 male Lewis and Sprague Dawley rats, which underwent no manipulation other than final dissection and analysis. Ten rats from each strain underwent bone mineral density and biomechanical strength analysis. The remaining rats underwent histological analysis. Descriptive and bivariate statistics were computed and the P value was set at 0.05.Lewis rats had a significantly greater number of empty lacunae. Sprague Dawley rats exhibited a significantly greater ratio of bone volume-to-total volume, bone mineral density, tissue mineral density, bone volume fraction, and total mineral content. No differences were found during biomechanical testing.This study demonstrates that differences exist between the Lewis and Sprague Dawley rat within unaltered baseline mandibular tissue. However, these differences appear to have limited functional impact, as demonstrated by similar biomechanical strength metrics. Other specific differences not addressed in this manuscript may exist. However, the authors believe that researchers may confidently cross-compare results between the 2 strains, while taking into account the differences found within this study.


Subject(s)
Mandible/anatomy & histology , Mandible/physiology , Animals , Biomechanical Phenomena , Bone Density , Male , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...