Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921740

ABSTRACT

Verticillium wilt is a soil-borne disease caused by distinct vegetative compatibility groups (VCG) of the fungus Verticillium dahliae. Defoliating (VCG 1A) and non-defoliating (VCG 2A) pathotypes of V. dahliae have contributed to yield losses of cotton production in Australia. To study the virulence and the infection process of V. dahliae on cotton, two isolates, one representing each VCG, have been transformed with fluorescent protein genes. The transformants maintained their ability to infect the host, and both strains were observed to move through the plant vasculature to induce wilt symptoms. Furthermore, virulence testing suggests that the cotton V. dahliae strains can endophytically colonise common weed plant species found in the Australian landscape, and that is contrasted by their ability to infect and colonise native tobacco plants. The fluorescently labelled strains of V. dahliae not only allowed us to gain a thorough understanding of the infection process but also provided a method to rapidly identify recovered isolates from host colonisation studies.

2.
Proc Natl Acad Sci U S A ; 120(15): e2214521120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023132

ABSTRACT

Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.


Subject(s)
DNA Transposable Elements , Eukaryota , DNA Transposable Elements/genetics , Eukaryota/genetics , Gene Transfer, Horizontal , Recombinases/genetics , Tyrosine/genetics , Evolution, Molecular
3.
J Fungi (Basel) ; 9(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36983453

ABSTRACT

Whole genome sequencing is rapidly increasing phylogenetic resolution across many groups of fungi. To improve sequencing coverage in the genus Paecilomyces (Eurotiales), we report nine new Paecilomyces genomes representing five different species. Phylogenetic comparison between these genomes and those reported previously showed that Paecilomyces paravariotii is a distinct species from its close relative P. variotii. The independence of P. paravariotii is supported by analysis of overall gene identify (via BLAST), differences in secondary metabolism and an inability to form ascomata when paired with a fertile P. variotii strain of opposite mating type. Furthermore, whole genome sequencing resolves the P. formosus clade into three separate species, one of which lacked a valid name that is now provided.

4.
mBio ; 14(1): e0317322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36537809

ABSTRACT

Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown. Here, we overcome these experimental barriers by developing model systems in 2 evolutionary distant organisms, Escherichia coli (bacterium) and Saccharomyces cerevisiae (yeast), similar to previous approaches taken to examine the wtf spore killers. Using these systems, we show that the Podospora anserina spore killer protein SPOK1 enacts killing through targeting DNA. IMPORTANCE Natural gene drives have shaped the genomes of many eukaryotes and recently have been considered for applications to control undesirable species. In fungi, these loci are called spore killers. Despite their importance in evolutionary processes and possible applications, our understanding of how they enact killing is limited. We show that the spore killer protein Spok1, which has homologues throughout the fungal tree of life, acts via DNA disruption. Spok1 is only the second spore killer locus in which the cellular target of killing has been identified and is the first known to target DNA. We also show that the DNA disrupting activity of Spok1 is functional in both bacteria and yeast suggesting a highly conserved mode of action.


Subject(s)
Atypical Squamous Cells of the Cervix , Gene Drive Technology , Female , Humans , Saccharomyces cerevisiae/genetics , Genes, Fungal , Spores, Fungal/genetics , DNA , Meiosis
5.
Curr Biol ; 32(5): 937-950.e5, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35063120

ABSTRACT

The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.


Subject(s)
Cadmium , DNA Transposable Elements , Byssochlamys , Cadmium/toxicity , Copper/toxicity , DNA Transposable Elements/genetics , Zinc
6.
J Microbiol Methods ; 190: 106342, 2021 11.
Article in English | MEDLINE | ID: mdl-34619139

ABSTRACT

Robust antifungal screening is technically challenging particularly for filamentous fungi. We present a method for undertaking antifungal screening assays that builds upon existing broth dilution protocols and incorporates time resolved image-based assessment of fungal growth. We show that the method performs with different fungi, particularly those for which spores can be used as inoculum, and with different compound classes, can accurately assess susceptibility or otherwise in only few hours and can even account for differences in inherent growth properties of strains.


Subject(s)
Antifungal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Fungi/drug effects , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Microbial Sensitivity Tests
7.
PLoS One ; 16(6): e0252333, 2021.
Article in English | MEDLINE | ID: mdl-34111151

ABSTRACT

Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus Leptosphaeria maculans in vitro, has been linked to disease on Brassica species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the sir gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on Brassica napus. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the L. maculans asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the sirZ gene encoding the transcription factor that coordinates the regulation of the other genes in the sir cluster. The sirZ over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, sirP and sirG, required for specific steps in the sirodesmin biosynthesis pathway, in the sirZ over-expression background resulted in strains that were unable to synthesize sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress sirZ during disease may provide new strategies for the control of blackleg disease.


Subject(s)
Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Leptosphaeria/metabolism , Leptosphaeria/pathogenicity , Transcription Factors/metabolism , Leptosphaeria/genetics , Piperazines/metabolism , Virulence
8.
Article in English | MEDLINE | ID: mdl-31304040

ABSTRACT

BACKGROUND: Viriditoxin is one of the 'classical' secondary metabolites produced by fungi and that has antibacterial and other activities; however, the mechanism of its biosynthesis has remained unknown. RESULTS: Here, a gene cluster (vdt) responsible for viriditoxin synthesis was identified, via a bioinformatics analysis of the genomes of Paecilomyces variotii and Aspergillus viridinutans that both are viriditoxin producers. The function of the eight-membered gene cluster of P. variotii was characterized by targeted gene disruptions, revealing the roles of each gene in the synthesis of this molecule and establishing its biosynthetic pathway, which includes a Baeyer-Villiger monooxygenase catalyzed reaction. Additionally, a predicted catalytically-inactive hydrolase was identified as being required for the stereoselective biosynthesis of (M)-viriditoxin. The subcellular localizations of two proteins (VdtA and VdtG) were determined by fusing these proteins to green fluorescent protein, to establish that at least two intracellular structures are involved in the compartmentalization of the synthesis steps of this metabolite. CONCLUSIONS: The predicted pathway for the synthesis of viriditoxin was established by a combination of genomics, bioinformatics, gene disruption and chemical analysis processes. Hence, this work reveals the basis for the synthesis of an understudied class of fungal secondary metabolites and provides a new model species for understanding the synthesis of biaryl compounds with a chiral axis.

9.
FEMS Microbiol Lett ; 366(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30998236

ABSTRACT

Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/microbiology , Fungal Proteins/genetics , Plant Diseases/microbiology , Transcriptome , Ascomycota/genetics , Ascomycota/metabolism , Fungal Proteins/metabolism , Virulence
10.
Front Microbiol ; 9: 3058, 2018.
Article in English | MEDLINE | ID: mdl-30619145

ABSTRACT

Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.

11.
Article in English | MEDLINE | ID: mdl-29270298

ABSTRACT

BACKGROUND: The dicarboximide fungicide iprodione has been used to combat blackleg disease of canola (Brassica napus), caused by the fungus Leptosphaeria maculans. For example, in Australia the fungicide was used in the late 1990s but is no longer registered for use against blackleg disease, and therefore the impact of iprodione on L. maculans has not been investigated. RESULTS: Resistance to iprodione emerged spontaneously under in vitro conditions at high frequency. A basis for this resistance was mutations in the hos1 gene that encodes a predicted osmosensing histidine kinase. While loss of the homologous histidine kinase in some fungi has deleterious effects on growth and pathogenicity, the L. maculans strains with the hos1 gene mutated had reduced growth under high salt conditions, but were still capable of causing lesions on B. napus. The relative ease to isolate mutants with resistance to iprodione provided a method to develop and then optimize a CRISPR/Cas9 system for gene disruptions in L. maculans, a species that until now has been particularly difficult to manipulate by targeted gene disruptions. CONCLUSIONS: While iprodione is initially effective against L. maculans in vitro, resistance emerges easily and these strains are able to cause lesions on canola. This may explain the limited efficacy of iprodione in field conditions. Iprodione resistance, such as through mutations of genes like hos1, provides an effective direction for the optimization of gene disruption techniques.

12.
Curr Microbiol ; 74(12): 1438-1446, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28840344

ABSTRACT

An insertional mutant with reduced pathogenicity on Brassica napus was identified in the plant pathogenic fungus Leptosphaeria maculans. The transfer-DNA molecule from Agrobacterium tumefaciens inserted into a gene encoding a protein with similarity to Sit4-associated proteins (SAPs). In contrast to Saccharomyces cerevisiae which has four members of the SAP family, there is a single copy of the gene in L. maculans. The mutant had normal spore production and spore germination, but altered hyphal branching, suggesting that nutrient signaling is impaired in the strain. This is the first time that a SAP gene has been mutated in a filamentous fungus and links the function of SAP proteins to plant pathogenesis and hyphal branching.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/microbiology , Fungal Proteins/metabolism , Plant Diseases/microbiology , Virulence Factors/metabolism , Ascomycota/genetics , Ascomycota/growth & development , Fungal Proteins/genetics , Hyphae/growth & development , Mutagenesis, Insertional , Spores, Fungal/growth & development , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...