Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 373(6556): 774-779, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34385392

ABSTRACT

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Subject(s)
Mixed Function Oxygenases/metabolism , Pectins/metabolism , Phytophthora infestans/enzymology , Plant Diseases/parasitology , Solanum lycopersicum/parasitology , Solanum tuberosum/parasitology , Copper , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Oxidation-Reduction , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Plant Leaves/parasitology , Polysaccharides/metabolism , Protein Conformation , Protein Domains , Virulence Factors/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism
2.
Biochemistry ; 59(32): 2934-2945, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32786405

ABSTRACT

The phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential peripheral membrane glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. PimA undergoes functionally important conformational changes, including (i) α-helix-to-ß-strand and ß-strand-to-α-helix transitions and (ii) an "open-to-closed" motion between the two Rossmann-fold domains, a conformational change that is necessary to generate a catalytically competent active site. In previous work, we established that GDP-Man and GDP stabilize the enzyme and facilitate the switch to a more compact active state. To determine the structural contribution of the mannose ring in such an activation mechanism, we analyzed a series of chemical derivatives, including mannose phosphate (Man-P) and mannose pyrophosphate-ribose (Man-PP-RIB), and additional GDP derivatives, such as pyrophosphate ribose (PP-RIB) and GMP, by the combined use of X-ray crystallography, limited proteolysis, circular dichroism, isothermal titration calorimetry, and small angle X-ray scattering methods. Although the ß-phosphate is present, we found that the mannose ring, covalently attached to neither phosphate (Man-P) nor PP-RIB (Man-PP-RIB), does promote the switch to the active compact form of the enzyme. Therefore, the nucleotide moiety of GDP-Man, and not the sugar ring, facilitates the "open-to-closed" motion, with the ß-phosphate group providing the high-affinity binding to PimA. Altogether, the experimental data contribute to a better understanding of the structural determinants involved in the "open-to-closed" motion not only observed in PimA but also visualized and/or predicted in other glycosyltransfeases. In addition, the experimental data might prove to be useful for the discovery and/or development of PimA and/or glycosyltransferase inhibitors.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mannosyltransferases/chemistry , Mannosyltransferases/metabolism , Movement , Mannose/metabolism , Models, Molecular , Protein Conformation
3.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 8): 496-505, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30084399

ABSTRACT

The recent discovery of `lytic' polysaccharide monooxygenases, copper-dependent enzymes for biomass degradation, has provided new impetus for the analysis of unusual metal-ion sites in carbohydrate-active enzymes. In this context, the CAZY family GH124 endoglucanase from Ruminiclostridium thermocellum contains an unusual metal-ion site, which was originally modelled as a Ca2+ site but features aspartic acid, asparagine and two histidine imidazoles as coordinating residues, which are more consistent with a transition-metal binding environment. It was sought to analyse whether the GH124 metal-ion site might accommodate other metals. It is demonstrated through thermal unfolding experiments that this metal-ion site can accommodate a range of transition metals (Fe2+, Cu2+, Mn2+ and Ni2+), whilst the three-dimensional structure and mass spectrometry show that one of the histidines is partially covalently modified and is present as a 2-oxohistidine residue; a feature that is rarely observed but that is believed to be involved in an `off-switch' to transition-metal binding. Atomic resolution (<1.1 Å) complexes define the metal-ion site and also reveal the binding of an unusual fructosylated oligosaccharide, which was presumably present as a contaminant in the cellohexaose used for crystallization. Although it has not been possible to detect a biological role for the unusual metal-ion site, this work highlights the need to study some of the many metal-ion sites in carbohydrate-active enzymes that have long been overlooked or previously mis-assigned.


Subject(s)
Bacterial Proteins/chemistry , Cellulase/chemistry , Metals, Heavy/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/physiology , Cellulase/genetics , Cellulase/metabolism , Crystallization , Metals, Heavy/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary
4.
Structure ; 25(7): 1034-1044.e3, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28625787

ABSTRACT

Glycosyltransferases (GTs) play a central role in nature. They catalyze the transfer of a sugar moiety to a broad range of acceptor substrates. GTs are highly selective enzymes, allowing the recognition of subtle structural differences in the sequences and stereochemistry of their sugar and acceptor substrates. We report here a series of structural snapshots of the reaction center of the retaining glucosyl-3-phosphoglycerate synthase (GpgS). During this sequence of events, we visualize how the enzyme guides the substrates into the reaction center where the glycosyl transfer reaction takes place, and unveil the mechanism of product release, involving multiple conformational changes not only in the substrates/products but also in the enzyme. The structural data are further complemented by metadynamics free-energy calculations, revealing how the equilibrium of loop conformations is modulated along these itineraries. The information reported here represent an important contribution for the understanding of GT enzymes at the molecular level.


Subject(s)
Catalytic Domain , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Molecular Dynamics Simulation , Protein Binding , Substrate Specificity
5.
Nat Commun ; 6: 10197, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26680532

ABSTRACT

Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.


Subject(s)
Alcohol Oxidoreductases/metabolism , Fungal Proteins/metabolism , Galactose Oxidase/metabolism , Alcohol Oxidoreductases/chemistry , Alcohols/metabolism , Catalytic Domain , Colletotrichum , Crystallization , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Fungal Proteins/chemistry , Fusarium , Galactose Oxidase/chemistry , Mutagenesis, Site-Directed , Phylogeny , Pichia , Protein Structure, Secondary , Protein Structure, Tertiary , Proton Magnetic Resonance Spectroscopy , Recombinant Proteins
6.
J Biol Chem ; 290(52): 31077-89, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26546681

ABSTRACT

Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys(19)-Pro(20)-Trp(21)-Cys(22) motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a "closed" compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an "open" conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Models, Molecular , Mycobacterium tuberculosis/chemistry , Prodrugs/chemistry , Protein Multimerization , Bacterial Proteins/genetics , Crystallography, X-Ray , Mycobacterium tuberculosis/genetics , Oxidation-Reduction , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary
7.
Angew Chem Int Ed Engl ; 54(34): 9898-902, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26136334

ABSTRACT

Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host-pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl-3-phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP-Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum-mechanics/molecular-mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front-side substrate-assisted SN i-type reaction.


Subject(s)
Biocatalysis , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Crystallography, X-Ray , Models, Molecular , Quantum Theory
8.
Nat Chem Biol ; 11(1): 16-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25402770

ABSTRACT

Secondary structure refolding is a key event in biology as it modulates the conformation of many proteins in the cell, generating functional or aberrant states. The crystal structures of mannosyltransferase PimA reveal an exceptional flexibility of the protein along the catalytic cycle, including ß-strand-to-α-helix and α-helix-to-ß-strand transitions. These structural changes modulate catalysis and are promoted by interactions of the protein with anionic phospholipids in the membrane.


Subject(s)
Bacterial Proteins/chemistry , Cell Membrane/metabolism , Glycosyltransferases/metabolism , Mannosyltransferases/chemistry , Protein Structure, Secondary , Animals , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cell Membrane/enzymology , Crystallography, X-Ray , Humans , Mannosyltransferases/genetics , Mannosyltransferases/isolation & purification , Models, Molecular , Mutagenesis, Site-Directed , Phospholipids/metabolism , Protein Structure, Secondary/genetics
9.
ACS Chem Biol ; 9(7): 1567-75, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24877756

ABSTRACT

The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis highlights the need to discover new antitubercular agents. Here we describe the synthesis and characterization of a new series of thienopyrimidine (TP) compounds that kill both replicating and non-replicating M. tuberculosis. The strategy to determine the mechanism of action of these TP derivatives was to generate resistant mutants to the most effective compound TP053 and to isolate the genetic mutation responsible for this phenotype. The only non-synonymous mutation found was a g83c transition in the Rv2466c gene, resulting in the replacement of tryptophan 28 by a serine. The Rv2466c overexpression increased the sensitivity of M. tuberculosis wild-type and resistant mutant strains to TP053, indicating that TP053 is a prodrug activated by Rv2466c. Biochemical studies performed with purified Rv2466c demonstrated that only the reduced form of Rv2466c can activate TP053. The 1.7 Å resolution crystal structure of the reduced form of Rv2466c, a protein whose expression is transcriptionally regulated during the oxidative stress response, revealed a unique homodimer in which a ß-strand is swapped between the thioredoxin domains of each subunit. A pronounced groove harboring the unusual active-site motif CPWC might account for the uncommon reactivity profile of the protein. The mutation of Trp28Ser clearly predicts structural defects in the thioredoxin fold, including the destabilization of the dimerization core and the CPWC motif, likely impairing the activity of Rv2466c against TP053. Altogether our experimental data provide insights into the molecular mechanism underlying the anti-mycobacterial activity of TP-based compounds, paving the way for future drug development programmes.


Subject(s)
Antitubercular Agents/chemistry , Drug Resistance, Multiple, Bacterial , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Pyrimidines/chemistry , Antitubercular Agents/pharmacology , Drug Design , Genes, Bacterial , Humans , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/growth & development , Pyrimidines/pharmacology , Tuberculosis/drug therapy
10.
J Biol Chem ; 288(41): 29797-808, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23963451

ABSTRACT

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of peripheral membrane-associated GTs for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here we used single molecule force spectroscopy techniques to study the mechanical and conformational properties of PimA. In our studies, we engineered a polyprotein containing PimA flanked by four copies of the well characterized I27 protein, which provides an unambiguous mechanical fingerprint. We found that PimA exhibits weak mechanical stability albeit displaying ß-sheet topology expected to unfold at much higher forces. Notably, PimA unfolds following heterogeneous multiple step mechanical unfolding pathways at low force akin to molten globule states. Interestingly, the ab initio low resolution envelopes obtained from small angle x-ray scattering of the unliganded PimA and the PimA·GDP complexed forms clearly demonstrate that not only the "open" and "closed" conformations of the GT-B enzyme are largely present in solution, but in addition, PimA experiences remarkable flexibility that undoubtedly corresponds to the N-terminal "Rossmann fold" domain, which has been proved to participate in protein-membrane interactions. Based on these results and on our previous experimental data, we propose a model wherein the conformational transitions are important for the mannosyltransferase to interact with the donor and acceptor substrates/membrane.


Subject(s)
Bacterial Proteins/chemistry , Mannosyltransferases/chemistry , Mycobacterium smegmatis/enzymology , Protein Conformation , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Essential/genetics , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Atomic Force/methods , Models, Molecular , Molecular Sequence Data , Mycobacterium smegmatis/genetics , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Unfolding , Scattering, Small Angle , Stress, Mechanical , X-Ray Diffraction
11.
J Biol Chem ; 287(29): 24649-61, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22637481

ABSTRACT

Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar ß-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the ß-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Mycobacterium/enzymology , Crystallography, X-Ray , Models, Biological , Polysaccharides, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...