Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Invest New Drugs ; 40(1): 30-41, 2022 02.
Article in English | MEDLINE | ID: mdl-34478029

ABSTRACT

Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from the pyrolysis of cellulose-containing materials such as soybean hulls, and three structurally related analogues. Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange/ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and ß-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization. All compounds impaired in vitro proliferation with IC50 values in a range of low micromolar. Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds (levoglucosenone and its brominated variant) were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after the treatment these two compounds. Here, we could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/pathology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Glucose/analogs & derivatives , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cellulose/chemistry , Dose-Response Relationship, Drug , Glucose/chemistry , Glucose/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Tumor Burden/drug effects
3.
Sci Rep ; 11(1): 6044, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723318

ABSTRACT

Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of "Kaplan-Meier plotter" database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Mammary Neoplasms, Experimental , Neoplasm Proteins , Neoplastic Stem Cells/enzymology , Protein Kinase C beta , Protein Kinase C-alpha , Animals , Cell Line, Tumor , Female , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/enzymology , Mice , Mice, Inbred BALB C , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase C beta/metabolism , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/metabolism , Protein Kinase Inhibitors/pharmacology , Tretinoin/pharmacology
4.
J Cancer Res Clin Oncol ; 146(12): 3241-3253, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32865619

ABSTRACT

PURPOSE: Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS: PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS: Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARß expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION: Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARß receptor is required to ensure the effect on this process.


Subject(s)
Breast Neoplasms/drug therapy , Protein Kinase C-alpha/genetics , Receptors, Retinoic Acid/genetics , Tretinoin/pharmacology , Animals , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Differentiation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , MCF-7 Cells , Mice , Retinoids/pharmacology , Signal Transduction/drug effects , Vitamin A/genetics
5.
Eur J Cell Biol ; 99(6): 151096, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32800275

ABSTRACT

GPC3 is a proteoglycan involved in the control of proliferation and survival, which has been linked to several tumor types. In this respect, we previously demonstrated that normal breast tissues exhibit high levels of GPC3, while its expression is diminished in tumors. However, the role of the GPC3 downregulation in breast cancer progression and its molecular and cellular operational machineries are not fully understood. In this study we showed that GPC3 reverts the epithelial-to-mesenchymal transition (EMT) underwent by mammary tumor cells, blocks metastatic spread and induces dormancy at secondary site. Using genetically modified murine breast cancer cell sublines, we demonstrated that the phospho-Erk/phospho-p38 ratio is lower in GPC3 reexpressing cells, while p21, p27 and SOX2 levels are higher, suggesting a dormant phenotype. In vivo metastasis assays confirmed that GPC3 reexpressing cells reduce their metastatic ability. Interestingly, the presence of dormant cells was evidenced in the lungs of inoculated mice. Dormant cells could reactivate their proliferative capacity, remain viable as well as tumorigenic, but they reentered in dormancy upon reaching secondary site. We also proved that GPC3 inhibits metastasis through p38 pathway activation. The in vivo inhibition of p38 induced an increase in cell invasion of GPC3 reexpressing orthotropic tumors as well as in spontaneous and experimental metastatic dissemination. In conclusion, our study shows that GPC3 returns mesenchymal-like breast cancer cells to an epithelial phenotype, impairs in vivo metastasis and induces tumor dormancy through p38 MAPK signaling activation. These results help to identify genetic determinants of dormancy and suggest the translational potential of research focusing in GPC3.


Subject(s)
Breast Neoplasms/genetics , Glypicans/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Neoplasm Metastasis , Signal Transduction
6.
Nutr Cancer ; 72(6): 1004-1017, 2020.
Article in English | MEDLINE | ID: mdl-31573355

ABSTRACT

Cancer stem cells (CSCs) are an important player in the resistance of cancers to therapy. In this work, we determined the flavonoids composition and biological action of Aloysia polystachya (AP) extracts in colorectal cancer. The chemical characterization of extracts was performed by HPLC. Assays of cytotoxicity, apoptosis, migration and invasion, metalloproteases activity, clonogenic growth, tumorspheres formation, Hoechts efflux, pluripotency marker expression and sensitization to chemotherapeutic drugs were performed in vitro in human HCT116 and murine CT26 colorectal cancer cells. The AP toxicity and effect in tumor growth administered alone or in combination with 5- Fluorouracile was analyzed in vivo, including histopathological studies. We found that AP extracts induced in vitro the apoptosis of colorectal cancer cell lines decreasing the CSC proportion. Moreover, they were capable to kill 5-Fluorouracile resistant side population cells. At not toxic doses in vivo, AP extracts inhibited tumor growth. Regarding the ability to reduce the CSC population, AP extracts deserves to be investigated as a useful therapy for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Neoplastic Stem Cells , Animals , Apoptosis , Cell Death , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Humans , Mice , Plant Extracts/pharmacology , Verbenaceae
7.
EXCLI J ; 17: 1030-1042, 2018.
Article in English | MEDLINE | ID: mdl-30585274

ABSTRACT

RAC3 is a coactivator of steroid receptors and NF-κB. It is usually overexpressed in several tumors, contributes to maintain cancer stem cells and also to induce them when is overexpressed in non-tumoral cells. In this work, we investigated whether the inflammatory cytokine TNF may contribute to the transforming effects of RAC3 overexpression in the non-tumoral HEK293 cell line. The study model included the HEK293 tumoral transformed cell line constitutively overexpressing RAC3 by stable transfection and control non-tumoral cells transfected with an empty vector. The HeLa and T47D tumoral cells that naturally overexpress RAC3 were used as positive control. We found that TNF potentiated RAC3-induced mesenchymal transition, involving an increased E-Cadherin downregulation, Vimentin and SNAIL upregulation and enhanced migratory behavior. Moreover, concerning the molecular mechanisms by which TNF potentiates the RAC3 transforming action, they involve the IKK activation, which in addition induced the ß-Catenin transactivation. Our results demonstrate that although RAC3 overexpression could be a signal strong enough to induce cancer stem cells, the inflammatory microenvironment may be playing a key role contributing to the migratory and invasive phenotype required for metastasis and cancer persistence.

8.
Oncotarget ; 9(5): 5848-5860, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464039

ABSTRACT

RAC3 is a transcription coactivator, usually overexpressed in several tumors and required to maintain the pluripotency in normal stem cells. In this work we studied the association between RAC3 overexpression on cancer cell stemness and the capacity of this protein to induce cancer stem properties in non tumoral cells. We performed in vitro and in vivo experiments using two strategies: by overexpressing RAC3 in the non tumoral cell line HEK293 and by silencing RAC3 in the human colorectal epithelial cell line HCT116 by transfection. Furthermore, we analysed public repository microarrays data from human colorectal tumors in different developmental stages. We found that RAC3 overexpression was mainly associated to CD133+ side-population of colon cancer cells and also to early and advanced stages of colon cancer, involving increased expression of mesenchymal and stem markers. In turn, RAC3 silencing induced diminished tumoral properties and cancer stem cells as determined by Hoechst efflux, tumorspheres and clonogenic growth, which correlated with decreased Nanog and OCT4 expression. In non tumoral cells, RAC3 overexpression induced tumoral transformation; mesenchymal phenotype and stem markers expression. Moreover, these transformed cells generated tumors in vivo. Our results demonstrate that RAC3 is required for maintaining and induction of cancer cell stemness.

9.
Cancer Cell Int ; 17: 42, 2017.
Article in English | MEDLINE | ID: mdl-28373828

ABSTRACT

BACKGROUND: Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS: The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS: We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic ß-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS: Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.

10.
Lung Cancer ; 107: 14-21, 2017 05.
Article in English | MEDLINE | ID: mdl-27319334

ABSTRACT

OBJECTIVES: Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. MATERIALS AND METHODS: Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. RESULTS AND CONCLUSION: We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.


Subject(s)
Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor/drug effects , Lung Neoplasms/drug therapy , Neoplasm Metastasis/drug therapy , Peptides, Cyclic/pharmacology , Administration, Intravenous , Angiogenesis Inhibitors/therapeutic use , Animals , Apoptosis/drug effects , Casein Kinase II/metabolism , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/drug therapy , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/metabolism , Phosphorylation/drug effects
11.
Curr Pharm Des ; 22(34): 5300-5310, 2016.
Article in English | MEDLINE | ID: mdl-27339432

ABSTRACT

Lung cancer (LC) remains the leading cause of cancer mortality worldwide, and non-small cell LC (NSCLC) represents 80% of all LC. Oxidative stress and inflammation, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen activated protein kinases (MAPK) participate in LC pathophysiology. Currently available treatment for LC is limited and in vivo models are lacking. We hypothesized that antioxidants and NF- κB, MAPK, and proteasome inhibitors may exert an antitumoral response through attenuation of several key biological mechanisms that promote tumorigenesis and cancer cell growth. Body and tumor weights, oxidative stress, antioxidants, inflammation, NF-κB p65 expression, fibulins, apoptosis, autophagy, tumor and stroma histology were evaluated in the subcutaneous tumor of LC (LP07 adenocarcinoma) BALB/c mice, with and without concomitant treatment with NF-κB (sulfasalazine), MEK (U0126), and proteasome (bortezomib) inhibitors, and N-acetyl cysteine (NAC). Compared to LC control mice, in subcutanous tumors, the four pharmacological agents reduced oxidative stress markers and tumor proliferation (ki-67). Inflammation and NF-κB p65 expression were attenuated by NF-κB and MAPK inhibitors, and the latter also enhanced apoptotic markers. Catalase was induced by the three inhibitors, while bortezomib also promoted superoxide dismutase expression. NF-κB and MEK inhibitors significantly reduced tumor burden through several biological mechanisms that favored tumor degradation and attenuated tumor proliferation. These two pharmacological agents may enhance the anti-tumor activity of selectively targeted therapeutic strategies for LC. Proteasomal inhibition using bortezomib rather promotes tumor degradation, while treatment with antioxidants cannot be recommended. This experimental model supports the use of adjuvant drugs for the improvement of LC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemotherapy, Adjuvant , Drug Screening Assays, Antitumor , Female , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Oxidative Stress/drug effects
12.
J Cell Biochem ; 117(3): 730-40, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26335446

ABSTRACT

Protein kinase C (PKC) is a family of serine/threonine kinases that regulate diverse cellular functions including cell death, proliferation, and survival. Recent studies have reported that PKCδ, are involved in apoptosis or autophagy induction. In the present study we focused on how PKCδ regulates proliferation and cancer stem cell (CSC) properties of the hormone-independent mammary cancer cell line LM38-LP, using pharmacological and genetic approaches. We found that pharmacological inhibition of PKCδ, by Rottlerin treatment, impairs in vitro LM38-LP proliferation through cell cycle arrest, inducing the formation of cytoplasmic-vacuoles. Using immunofluorescence we confirmed that Rottlerin treatment induced the apparition of LC3 dots in cell cytoplasm, and increased autophagy flux. On the other side, the same treatment increased CSC growth rate and self-renewal. Furthermore, Rottlerin pre-treatment induced in CSC the development of a "grape-like" morphology when they are growing in 3D cultures (Matrigel), usually associated with a malignant phenotype, as well as an increase in the number of experimental lung metastasis when these cells were inoculated in vivo. The PKCδ knockdown, by RNA interference, induced autophagy and increased CSC number, indicating that these effects are indeed exerted through a PKCδ dependent pathway. Finally, the increase in the number of mammospheres could be reversed by a 3MA treatment, suggesting that autophagy mechanism is necessary for the increased of CSC self-renewal induced by PKCδ inhibition. Here we demonstrated that PKCδ activity exerts a dual role through the autophagy mechanism, decreasing proliferative capacity of mammary tumor cells but also regulating tumor stem cell self-renewal.


Subject(s)
Autophagy , Lung Neoplasms/enzymology , Mammary Neoplasms, Experimental/enzymology , Neoplastic Stem Cells/physiology , Protein Kinase C-delta/metabolism , Acetophenones/pharmacology , Animals , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Self Renewal , Drug Screening Assays, Antitumor , Female , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neoplasm Transplantation , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase C-delta/genetics , Protein Kinase Inhibitors/pharmacology
13.
Cell Oncol (Dordr) ; 38(4): 289-305, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26044847

ABSTRACT

PURPOSE: Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. MATERIALS AND METHODS: The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. RESULTS: We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. CONCLUSIONS: Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.


Subject(s)
Adenocarcinoma/drug therapy , Cell Proliferation/drug effects , Mammary Neoplasms, Animal/drug therapy , Tretinoin/pharmacology , Tumor Burden/drug effects , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mice, Inbred BALB C , Microscopy, Fluorescence , Models, Biological , Receptors, Retinoic Acid/genetics , Reverse Transcriptase Polymerase Chain Reaction
14.
Mol Carcinog ; 54(10): 1110-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24838400

ABSTRACT

It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.


Subject(s)
Breast Neoplasms/metabolism , Protein Kinase C-alpha/metabolism , Protein Kinase C-delta/metabolism , Receptors, Retinoic Acid/metabolism , Tretinoin/metabolism , Animals , Breast Neoplasms/drug therapy , Cell Differentiation/drug effects , Cell Nucleolus/drug effects , Cell Nucleolus/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Mice, Inbred BALB C , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured
15.
J Cell Physiol ; 229(11): 1660-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24615622

ABSTRACT

Cachexia is a relevant comorbid condition of chronic diseases including cancer. Inflammation, oxidative stress, autophagy, ubiquitin-proteasome system, nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPK) are involved in the pathophysiology of cancer cachexia. Currently available treatment is limited and data demonstrating effectiveness in in vivo models are lacking. Our objectives were to explore in respiratory and limb muscles of lung cancer (LC) cachectic mice whether proteasome, NF-κB, and MAPK inhibitors improve muscle mass and function loss through several molecular mechanisms. Body and muscle weights, limb muscle force, protein degradation and the ubiquitin-proteasome system, signaling pathways, oxidative stress and inflammation, autophagy, contractile and functional proteins, myostatin and myogenin, and muscle structure were evaluated in the diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing cachectic mice (BALB/c), with and without concomitant treatment with NF-κB (sulfasalazine), MAPK (U0126), and proteasome (bortezomib) inhibitors. Compared to control animals, in both respiratory and limb muscles of LC cachectic mice: muscle proteolysis, ubiquitinated proteins, autophagy, myostatin, protein oxidation, FoxO-1, NF-κB and MAPK signaling pathways, and muscle abnormalities were increased, while myosin, creatine kinase, myogenin, and slow- and fast-twitch muscle fiber size were decreased. Pharmacological inhibition of NF-κB and MAPK, but not the proteasome system, induced in cancer cachectic animals, a substantial restoration of muscle mass and force through a decrease in muscle protein oxidation and catabolism, myostatin, and autophagy, together with a greater content of myogenin, and contractile and functional proteins. Attenuation of MAPK and NF-κB signaling pathway effects on muscles is beneficial in cancer-induced cachexia.


Subject(s)
Autophagy , Cachexia/drug therapy , Cachexia/etiology , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Muscle Weakness/drug therapy , Muscle, Skeletal/pathology , Proteolysis , Animals , Autophagy/drug effects , Boronic Acids/pharmacology , Boronic Acids/therapeutic use , Bortezomib , Butadienes/pharmacology , Butadienes/therapeutic use , Cell Line, Tumor , Inflammation/complications , Inflammation/pathology , Inflammation/physiopathology , Lung Neoplasms/metabolism , Lung Neoplasms/physiopathology , Mice , Mice, Inbred BALB C , Muscle Contraction/drug effects , Muscle Proteins/metabolism , Muscle Weakness/etiology , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Muscle, Skeletal/abnormalities , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , NF-kappa B/metabolism , Nitriles/pharmacology , Nitriles/therapeutic use , Oxidation-Reduction , Proteolysis/drug effects , Pyrazines/pharmacology , Pyrazines/therapeutic use , Signal Transduction/drug effects , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Tyrosine/metabolism , Weight Gain/drug effects
16.
Pancreas ; 42(7): 1060-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23695799

ABSTRACT

OBJECTIVE: This study aimed to investigate whether the overexpression of protein kinase C ß1 (PKCß1) is able to modulate the malignant phenotype displayed by the human ductal pancreatic carcinoma cell line PANC1. METHODS: PKCß1 overexpression was achieved using a stable transfection approach. PANC1-PKCß1 and control cells were analyzed both in vitro and in vivo. RESULTS: PANC1-PKCß1 cells displayed a lower growth capacity associated with the down-regulation of the MEK/ERK pathway and cyclin expression. Furthermore, PKCß1 overexpression was associated with an enhancement of cell adhesion to fibronectin and with reduced migratory and invasive phenotypes. In agreement with these results, PANC1-PKCß1 cells showed an impaired ability to secrete proteolytic enzymes. We also found that PKCß1 overexpressing cells were more resistant to cell death induced by serum deprivation, an event associated with G0/G1 arrest and the modulation of PI3K/Akt and NF-κB pathways. Most notably, the overexpression of PKCß1 completely abolished the ability of PANC1 cells to induce tumors in nude mice. CONCLUSIONS: Our results established an important role for PKCß1 in PANC1 cells suggesting it would act as a suppressor of tumorigenic behavior in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/etiology , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/etiology , Protein Kinase C beta/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Heterografts , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Pancreatic Neoplasms/pathology , Peptide Hydrolases/metabolism , Protein Kinase C beta/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation
17.
Exp Physiol ; 98(9): 1349-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23625954

ABSTRACT

NEW FINDINGS: What is the central question of this study? We explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles,and whether signalling pathways, proteasome and oxidative stress influence that process. What is the main finding and what is its importance? In cancer cachectic mice, MRC complexes and oxygen consumption were decreased in the diaphragm and gastrocnemius. Blockade of nuclear factor-κB and mitogen-activated protein kinase actions partly restored the muscle mass and force and corrected the MRC dysfunction,while concomitantly reducing tumour burden. Antioxidants improved mitochondrial oxygen consumption without eliciting effects on the loss of muscle mass and force or the tumour size,whereas bortezomib reduced tumour burden without influencing muscle mass and strength or MRC function. Abnormalities in mitochondrial content, morphology and function have been reported in several muscle-wasting conditions. We specifically explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles, and whether signalling pathways, proteasomes and oxidative stress may influence that process. We evaluated complex I, II and IV enzyme activities (specific activity assays) and MRC oxygen consumption (polarographic measurements) in diaphragm and gastrocnemius of cachectic mice bearing the LP07 lung tumour, with and without treatment with N-acetylcysteine, bortezomib and nuclear factor-κB (sulfasalazine) and mitogen-activated protein kinases (MAPK, U0126) inhibitors (n = 10 per group for all groups). Whole-body and muscle weights and limb muscle force were also assessed in all rodents at baseline and after 1 month. Compared with control animals, cancer cachectic mice showed a significant reduction in body weight gain, smaller sizes of the diaphragm and gastrocnemius, lower muscle strength, decreased activity of complexes I, II and IV and decreased oxygen consumption in both muscles. Blockade of nuclear factor-κB and MAPK actions restored muscle mass and force and corrected the MRC dysfunction in both muscles, while partly reducing tumour burden. Antioxidants improved mitochondrial oxygen uptake without eliciting significant effects on the loss of muscle mass and force or tumour size, whereas the proteasome inhibitor reduced tumour burden without significantly influencing muscle mass and strength or mitochondrial function. In conclusion, nuclear factor-κB and MAPK signalling pathways modulate muscle mass and performance and MRC function of respiratory and limb muscles in this model of experimental cancer cachexia, thus offering targets for therapeutic intervention.


Subject(s)
Cachexia/physiopathology , Diaphragm/physiopathology , Electron Transport Chain Complex Proteins/metabolism , Lung Neoplasms/physiopathology , Mitochondrial Diseases/physiopathology , Muscle, Skeletal/physiopathology , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Boronic Acids/therapeutic use , Bortezomib , Diaphragm/pathology , Female , MAP Kinase Signaling System/physiology , Mice , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Muscle Strength , NF-kappa B/antagonists & inhibitors , NF-kappa B/therapeutic use , Oxidative Stress , Pyrazines/therapeutic use
18.
IUBMB Life ; 64(1): 18-26, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22095874

ABSTRACT

The protein kinase C (PKC) family of serine/threonine kinases has been intensively studied in cancer since their discovery as major receptors for the tumor-promoting phorbol esters. The contribution of each individual PKC isozyme to malignant transformation is only partially understood, but it is clear that each PKC plays different role in cancer progression. PKC deregulation is a common phenomenon observed in breast cancer, and PKC expression and localization are usually dynamically regulated during mammary gland differentiation and involution. In fact, the overexpression of several PKCs has been reported in malignant human breast tissue and breast cancer cell lines. In this review, we summarize the knowledge available on the specific roles of PKC isoforms in the development, progression, and metastatic dissemination of mammary cancer. We also discuss the role of PKC isoforms as therapeutic targets, and their potential as markers for prognosis or treatment response.


Subject(s)
Breast Neoplasms/enzymology , Protein Kinase C/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Isoenzymes/metabolism , Phenotype , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Structure, Tertiary
19.
Breast Cancer Res Treat ; 126(3): 577-87, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20512658

ABSTRACT

Doxorubicin is an anti-tumor antibiotic widely used in the management of cancer patients. Its main mechanism of action involves the generation of DNA damage and the inhibition of topoisomerase II, promoting apoptosis. AD 198 is a novel doxorubicin analog devoid of DNA binding and topoisomerase II inhibitory capacities. It has been proposed that AD 198 induces apoptosis by activating protein kinase C delta (PKCδ); a PKC isoform described as growth inhibitory in a large number of cell types. We have previously demonstrated that PKCδ overexpression in NMuMG cells induced the opposite effect, promoting proliferation and cell survival. In this study, we found that PKCδ overexpression confers an enhanced cell death resistance against AD 198 cytotoxic effect and against AD 288, another doxorubicin analog that preserves its mechanism of action. These resistances involve PKCδ-mediated activation of two well-known survival pathways: Akt and NF-κB. While the resistance against AD 198 could be abrogated upon the inhibition of either Akt or NF-κB pathways, only NF-κB inhibition could revert the resistance to AD 288. Altogether, our results indicate that PKCδ increases cell death resistance against different apoptosis inductors, independently of their mechanism of action, through a differential modulation of Akt and NF-κB pathways. Our study contributes to a better understanding of the mechanisms involved in PKCδ-induced resistance and may greatly impact in the rationale design of isozyme-specific PKC modulators as therapeutic agents.


Subject(s)
Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Protein Kinase C-delta/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cell Line, Tumor , Cell Survival , DNA Topoisomerases, Type II/chemistry , Female , Gene Expression Profiling , Mammary Neoplasms, Animal/metabolism , Mice , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Subcellular Fractions
20.
Int J Breast Cancer ; 2011: 595092, 2011.
Article in English | MEDLINE | ID: mdl-22295229

ABSTRACT

Autophagy is a catabolic process responsible for the degradation and recycling of long-lived proteins and organelles by lysosomes. This degradative pathway sustains cell survival during nutrient deprivation, but in some circumstances, autophagy leads to cell death. Thereby, autophagy can serve as tumor suppressor, as the reduction in autophagic capacity causes malignant transformation and spontaneous tumors. On the other hand, this process also functions as a protective cell-survival mechanism against environmental stress causing resistance to antineoplastic therapies. Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...