Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 65(3): 481-484, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38124121

ABSTRACT

To elucidate potential benefits of the Auger-electron-emitting radionuclide 161Tb, we compared the preclinical performance of the gastrin-releasing peptide receptor antagonists RM2 (DOTA-Pip5-d-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) and AMTG (α-Me-Trp8-RM2), each labeled with both 177Lu and 161Tb. Methods: 161Tb/177Lu labeling (90°C, 5 min) and cell-based experiments (PC-3 cells) were performed. In vivo stability (30 min after injection) and biodistribution studies (1-72 h after injection) were performed on PC-3 tumor-bearing CB17-SCID mice. Results: Gastrin-releasing peptide receptor affinity was high for all compounds (half-maximal inhibitory concentration [nM]: [161Tb]Tb-RM2, 2.46 ± 0.16; [161Tb]Tb-AMTG, 2.16 ± 0.09; [177Lu]Lu-RM2, 3.45 ± 0.18; [177Lu]Lu-AMTG, 3.04 ± 0.08), and 75%-84% of cell-associated activity was receptor-bound. In vivo, both AMTG analogs displayed distinctly higher stability (30 min after injection) and noticeably higher tumor retention than their RM2 counterparts. Conclusion: On the basis of preclinical results, [161Tb]Tb-/[177Lu]Lu-AMTG might reveal a higher therapeutic efficacy than [161Tb]Tb-/[177Lu]Lu-RM2, particularly [161Tb]Tb-AMTG because of additional Auger-electron emissions at the cell membrane level.


Subject(s)
Electrons , Receptors, Bombesin , Mice , Animals , Mice, SCID , Tissue Distribution , Cell Membrane
2.
Pharmaceutics ; 15(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36986687

ABSTRACT

In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18.

3.
EJNMMI Res ; 13(1): 2, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36645586

ABSTRACT

BACKGROUND: Radioguided surgery (RGS) has recently emerged as a valuable new tool in the management of recurrent prostate cancer (PCa). After preoperative injection of a 99mTc-labeled prostate-specific membrane antigen (PSMA) inhibitor, radioguided intraoperative identification and resection of lesions is facilitated by means of suitable γ-probes. First clinical experiences show the feasibility of RGS and suggest superiority over conventional lymph node dissection in recurrent PCa. However, commonly used [99mTc]Tc-PSMA-I&S exhibits slow whole-body clearance, thus hampering optimal tumor-to-background ratios (TBR) during surgery. We therefore aimed to develop novel 99mTc-labeled, PSMA-targeted radioligands with optimized pharmacokinetic profile to increase TBR at the time of surgery. METHODS: Three 99mTc-labeled N4-PSMA ligands were preclinically evaluated and compared to [99mTc]Tc-PSMA-I&S. PSMA affinity (IC50) and internalization were determined on LNCaP cells. Lipophilicity was assessed by means of the distribution coefficient logD7.4 and an ultrafiltration method was used to determine binding to human plasma proteins. Biodistribution studies and static µSPECT/CT-imaging were performed at 6 h p.i. on LNCaP tumor-bearing CB17-SCID mice. RESULTS: The novel N4-PSMA tracers were readily labeled with [99mTc]TcO4- with RCP > 95%. Comparable and high PSMA affinity was observed for all [99mTc]Tc-N4-PSMA-ligands. The ligands showed variable binding to human plasma and medium to low lipophilicity (logD7.4 - 2.6 to - 3.4), both consistently decreased compared to [99mTc]Tc-PSMA-I&S. Biodistribution studies revealed comparable tumor uptake among all [99mTc]Tc-N4-PSMA-ligands and [99mTc]Tc-PSMA-I&S, while clearance from most organs was superior for the novel tracers. Accordingly, increased TBR were achieved. [99mTc]Tc-N4-PSMA-12 showed higher TBR than [99mTc]Tc-PSMA-I&S for blood and all evaluated tissue. In addition, a procedure suitable for routine clinical production of [99mTc]Tc-N4-PSMA-12 was established. Labeling with 553 ± 187 MBq was achieved with RCP of 98.5 ± 0.6% (n = 10). CONCLUSION: High tumor accumulation and favorable clearance from blood and non-target tissue make [99mTc]Tc-N4-PSMA-12 an attractive tracer for RGS, possibly superior to currently established [99mTc]Tc-PSMA-I&S. Its GMP-production according to a method presented here and first clinical investigations with this novel radioligand is highly recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...