Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21263105

ABSTRACT

Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259576

ABSTRACT

ObjectivesImmunocompromised patients were excluded from COVID-19 vaccine clinical trials. The objectives of the study were to measure antibody responses, levels, and neutralization capability after COVID-19 vaccination among immunocompromised patients and compare these variables to those of immunocompetent healthcare workers. MethodsThis is an interim analysis of an ongoing observational, prospective cohort study which launched on April 14, 2021 across Western Pennsylvania. Participants were healthy healthcare workers (HCW) and immunocompromised patients who had completed their COVID-19 vaccination series. Individuals with a history of COVID-19 were not eligible. Serum was collected to measure for the presence of IgG against the SARS-CoV-2 Spike protein using a semi-quantitative assay; antibody levels were available for comparisons. A quasi-random subset of patients was selected for pseudovirus neutralization assays. Seropositivity with 95% Clopper-Pearson exact confidence intervals and distribution of antibody levels were measured. To identify risk factors for seronegativity, clinical characteristics were univariately compared between antibody reactive and non-reactive individuals within the immunocompromised group. Results107 HCW and 489 immunocompromised patients were enrolled. Compared to HCWs, seropositivity was significantly lower (p<.001) among immunocompromised patients with Solid organ transplant (SOT), autoimmune, hematological malignancies, and solid tumors (HCW=98.1%; SOT=37.2%; autoimmune=83.8%; hematological malignancies=54.7%; and solid tumor=82.4%, p < 0.05). Over 94% of patients with Human Immunodeficiency Virus were seropositive. Among seropositive patients, antibody levels were much lower among SOT (4.5 [2.1,13.1], p=.020). Neutralization titers tightly correlated with antibody levels (Spearman r = 0.91, p < 0.0001). ConclusionOur findings demonstrate the heterogeneity of the humoral immune response to COVID-19 vaccines based on underlying immunosuppressive condition and highlight an urgent need to optimize and individualize COVID-19 prevention in these patients. These findings also have implications on public health guidance, particularly given revised Centers for Disease Control and Prevention recommendations permitting vaccinated individuals to abandon masking and social distancing in most settings. Future studies are warranted to determine assessment of cellular immunity, longitudinal measurement of immune responses, and the safety and efficacy of revaccination.

SELECTION OF CITATIONS
SEARCH DETAIL
...