Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(7): 2654-2668, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28052200

ABSTRACT

Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pKa and lower log D7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.


Subject(s)
Adamantane/analogs & derivatives , Antimalarials/therapeutic use , Malaria/drug therapy , Peroxides/therapeutic use , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Adamantane/administration & dosage , Adamantane/blood , Adamantane/pharmacology , Adamantane/therapeutic use , Animals , Antimalarials/administration & dosage , Antimalarials/blood , Antimalarials/pharmacology , Female , Male , Mice , Peroxides/administration & dosage , Peroxides/blood , Peroxides/pharmacology , Rats , Structure-Activity Relationship
2.
Proc Natl Acad Sci U S A ; 108(11): 4400-5, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21300861

ABSTRACT

Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC(50) values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghei-infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe(II)-reactivity to elicit parasite death.


Subject(s)
Adamantane/analogs & derivatives , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/therapeutic use , Malaria/drug therapy , Peroxides/administration & dosage , Peroxides/therapeutic use , Adamantane/administration & dosage , Adamantane/chemistry , Adamantane/pharmacokinetics , Adamantane/therapeutic use , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/therapeutic use , Dose-Response Relationship, Drug , Drug Stability , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics , Iron/metabolism , Malaria/parasitology , Male , Mice , Peroxides/chemistry , Peroxides/pharmacokinetics , Plasmodium berghei/physiology , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome
3.
Bioorg Med Chem Lett ; 20(2): 563-6, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19962893

ABSTRACT

Thirty-three N-acyl 1,2,4-dispiro trioxolanes (secondary ozonides) were synthesized. For these ozonides, weak base functional groups were not required for high antimalarial potency against Plasmodium falciparum in vitro, but were necessary for high antimalarial efficacy in Plasmodium berghei-infected mice. A wide range of LogP/D(pH)(7.4) values were tolerated, although more lipophilic ozonides tended to be less metabolically stable.


Subject(s)
Antimalarials/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics , Mice , Plasmodium falciparum/drug effects , Rats
4.
J Med Chem ; 53(1): 481-91, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19924861

ABSTRACT

The structure and stereochemistry of the cyclohexane substituents of analogues of arterolane (OZ277) had little effect on potency against Plasmodium falciparum in vitro. Weak base functional groups were not required for high antimalarial potency, but they were essential for high antimalarial efficacy in P. berghei-infected mice. Five new ozonides with antimalarial efficacy and ADME profiles superior or equal to that of arterolane were identified.


Subject(s)
Antimalarials/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacology , Peroxides/pharmacology , Plasmodium falciparum/drug effects , Spiro Compounds/pharmacology , Animals , Antimalarials/adverse effects , Antimalarials/chemistry , Antimalarials/therapeutic use , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Molecular Conformation , Parasitic Sensitivity Tests , Peroxides/chemical synthesis , Peroxides/pharmacokinetics , Peroxides/therapeutic use , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Spiro Compounds/therapeutic use , Stereoisomerism , Structure-Activity Relationship
5.
Antimicrob Agents Chemother ; 53(9): 3620-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19546364

ABSTRACT

Racemic 2,4-diaminopyrimidine dihydrophthalazine derivatives BAL0030543, BAL0030544, and BAL0030545 exhibited low in vitro MICs toward small, selected panels of Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Moraxella catarrhalis, and Mycobacterium avium, though the compounds were less active against Haemophilus influenzae. The constellation of dihydrofolate reductases (DHFRs) present in 20 enterococci and 40 staphylococci was analyzed and correlated with the antibacterial activities of the dihydrophthalazines and trimethoprim. DHFRs encoded by dfrB, dfrA (S1 isozyme), dfrE, and folA were susceptible to the dihydrophthalazines, whereas DHFRs encoded by dfrG (S3 isozyme) and dfrF were not. Studies with the separated enantiomers of BAL0030543, BAL0030544, and BAL0030545 revealed preferential inhibition of susceptible DHFRs by the (R)-enantiomers. BAL0030543, BAL0030544, and BAL0030545 were well tolerated by mice during 5- and 10-day oral toxicity studies at doses of up to 400 mg/kg of body weight. Using a nonoptimized formulation, the dihydrophthalazines displayed acceptable oral bioavailabilities in mice, and efficacy studies with a septicemia model of mice infected with trimethoprim-resistant, methicillin-resistant Staphylococcus aureus gave 50% effective dose values in the range of 1.6 to 6.25 mg/kg.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/pharmacokinetics , Phthalazines/pharmacology , Phthalazines/pharmacokinetics , Trimethoprim/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Enterococcus/drug effects , Enterococcus/enzymology , Folic Acid Antagonists/chemistry , Haemophilus influenzae/drug effects , Haemophilus influenzae/enzymology , HeLa Cells , Humans , Male , Mice , Microbial Sensitivity Tests , Molecular Structure , Moraxella catarrhalis/drug effects , Moraxella catarrhalis/enzymology , Mycobacterium avium/drug effects , Mycobacterium avium/enzymology , Phthalazines/chemistry , Polymerase Chain Reaction , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Tetrahydrofolate Dehydrogenase/genetics , Trimethoprim/chemistry , Trimethoprim/pharmacokinetics
6.
Bioorg Med Chem Lett ; 17(5): 1260-5, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17189686

ABSTRACT

Thirty weak base 1,2,4-dispiro trioxolanes (secondary ozonides) were synthesized. Amino amide trioxolanes had the best combination of antimalarial and biopharmaceutical properties. Guanidine, aminoxy, and amino acid trioxolanes had poor antimalarial activity. Lipophilic trioxolanes were less stable metabolically than their more polar counterparts.


Subject(s)
Antimalarials/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Antimalarials/pharmacology , Crystallography, X-Ray , Heterocyclic Compounds/chemistry , Molecular Structure , Structure-Activity Relationship
7.
J Med Chem ; 48(15): 4953-61, 2005 Jul 28.
Article in English | MEDLINE | ID: mdl-16033274

ABSTRACT

This paper describes the discovery of synthetic 1,2,4-trioxolane antimalarials and how we established a workable structure-activity relationship in the context of physicochemical, biopharmaceutical, and toxicological profiling. An achiral dispiro-1,2,4-trioxolane (3) in which the trioxolane is flanked by a spiroadamantane and spirocyclohexane was rapidly identified as a lead compound. Nonperoxidic 1,3-dioxolane isosteres of 3 were inactive as were trioxolanes without the spiroadamantane. The trioxolanes were substantially less effective in a standard oral suspension formulation compared to a solubilizing formulation and were more active when administered subcutaneously than orally, both of which suggest substantial biopharmaceutical liabilities. Nonetheless, despite their limited oral bioavailability, the more lipophilic trioxolanes generally had better oral activity than their more polar counterparts. In pharmacokinetic experiments, four trioxolanes had high plasma clearance values, suggesting a potential metabolic instability. The toxicological profiles of two trioxolanes were comparable to that of artesunate.


Subject(s)
Antimalarials/chemical synthesis , Malaria/drug therapy , Ozone/chemistry , Peroxides/chemical synthesis , Spiro Compounds/chemical synthesis , Adamantane/analogs & derivatives , Adamantane/chemical synthesis , Adamantane/pharmacology , Adamantane/toxicity , Animals , Antimalarials/pharmacology , Antimalarials/toxicity , Cell Line, Tumor , Drug Resistance , Half-Life , Malaria, Falciparum/drug therapy , Mice , Micronucleus Tests , Peroxides/pharmacology , Peroxides/toxicity , Plasmodium berghei , Rats , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship
8.
Nature ; 430(7002): 900-4, 2004 Aug 19.
Article in English | MEDLINE | ID: mdl-15318224

ABSTRACT

The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle. Available evidence suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem and proteins (enzymes), one of which--the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)--may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes. However, as a drug class, the artemisinins suffer from chemical (semi-synthetic availability, purity and cost), biopharmaceutical (poor bioavailability and limiting pharmacokinetics) and treatment (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Artemisinins/chemistry , Drug Design , Drug Evaluation, Preclinical , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/pharmacology , Peroxides , Sesquiterpenes/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Biological Availability , Half-Life , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Humans , Inhibitory Concentration 50 , Malaria/drug therapy , Malaria/metabolism , Malaria/parasitology , Mice , Oxidation-Reduction , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/drug effects , Rats , Rats, Wistar , Solubility , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...