Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1429814, 2024.
Article in English | MEDLINE | ID: mdl-39022618

ABSTRACT

Background: Chronic diseases have a negative impact on quality of life (QOL) and psychological health. There are limited related data regarding this topic in Brugada syndrome (BrS). We evaluated the effects of the diagnosis of BrS on health-related QOL and psychological status among patients and their relatives. Methods: Patients with BrS and their relatives underwent psychological evaluation at diagnosis (T0), 1 and 2 years after diagnosis (T1 and T2) using questionnaires on mental QOL, anxiety, depression, stress, post-traumatic stress, and resilience resources. Results: Sixty-one patients and 39 relatives were enrolled. Compared with controls, patients showed increased physical QOL (54.1 ± 6.5 vs. 50.1 ± 8.0, p = 0.014), reduced mental QOL (43.2 ± 11.8 vs. 49.6 ± 9.1, p = 0.018) and increased anxiety (9.9 ± 6.6 vs. 6.9 ± 7.7, p = 0.024) at T0; reduced resilience scores (3.69 ± 0.40 vs. 3.96 ± 0.55, p = 0.008) at T1; and reduced resilience (3.69 ± 0.35 vs. 3.96 ± 0.55, p = 0.019) and increased anxiety scores (16.4 ± 12.8 vs. 6.9 ± 7.7, p = 0.006) at T2. Relatives presented higher stress (17.63 ± 3.77 vs. 12.90 ± 6.0, p = 0.02) at T0 and higher anxiety scores at T0 (13.5 ± 7.6 vs. 6.9 ± 7.7, p < 0.001), T1 (12.0 ± 8.7 vs. 6.9 ± 7.7, p = 0.005), and T2 (16.4 ± 12.8 vs. 6.9 ± 7.7, p = 0.006) than controls. Female sex was significantly independently associated with worse mental QOL scores in patients at T0 (odds ratio = 0.10; 95% confidence interval = 0.05-0.94; p = 0.04). Conclusions: The diagnosis of BrS impairs the QOL and psychological status of patients and their relatives. Female sex is independently associated with worse mental QOL in patients at diagnosis.

2.
Mater Today Bio ; 18: 100526, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36632629

ABSTRACT

The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.

SELECTION OF CITATIONS
SEARCH DETAIL
...