Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(19): 26799-26806, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674554

ABSTRACT

A dichroic dye-doped liquid crystal Fresnel lens was fabricated and investigated to observe the combination of phase and amplitude modulation based focusing. An anthraquinone dichroic dye was doped into a liquid crystal host, which when in the Fresnel lens configuration, generates a Fresnel zone plate with alternating "transparent" and "opaque" zones. The zones were induced by using photo-alignment of a light-sensitive alignment layer to generate the alternating pattern. The voltage dependency of efficiency for the dye-doped and pure liquid crystal Fresnel devices were investigated. Incorporation of dyes into the device yielded a significant 4% improvement in relative efficiency in the lens, giving a maximum of 37% achieved in the device, much closer to the theoretical 41% limit when compared with the non-dye-doped device. The input polarization dependence of efficiency was also investigated, showing very small fluctuations (±1.5%), allowing further insight into the effect of fabrication method on these liquid crystal Fresnel devices.

2.
Colloids Surf B Biointerfaces ; 56(1-2): 260-4, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17208420

ABSTRACT

We have investigated the molecular orientation of glassy poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) layers formed on photo-aligned polyimide films with different in-plane anisotropy. The polyimide contains azobenzene in the backbone structure (Azo-PI), allowing us to control the in-plane anisotropy of the film by varying linearly polarized light (LP-L) exposure. The glassy PFO layers (approximately 30 nm thick) were obtained by annealing the samples at the liquid crystalline phase of PFO and then quenching them to room temperature. The degree of alignment of PFO was assessed by the polarization ratio of photoluminescence (PL). The PL polarization ratio increased rapidly with the LP-L exposure, and it reached 10 at 2.8 J/cm(2). Beyond this LP-L exposure, it became almost constant around 10.4. This PL polarization ratio was much higher than the absorption dichroic ratio of the underlying Azo-PI film. This result suggests that the degree of alignment of PFO is determined by its liquid crystalline nature. The saturation dependence of the degree of alignment is very useful for fabricating alignment patterns by a simple photo-mask exposure method. We have succeeded in fabricating 3 microm line-and-space alignment patterns of PFO.


Subject(s)
Fluorenes/chemistry , Fluorescence Polarization , Imides/chemistry , Photochemistry/methods , Azo Compounds/chemistry , Fluorenes/classification , Imides/classification , Microscopy, Polarization , Molecular Structure , Polymers/chemistry , Polymers/classification , Solubility , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...