Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958672

ABSTRACT

Cancer is a worldwide health problem. Nevertheless, new technologies in the immunotherapy field have emerged. Chimeric antigen receptor (CAR) technology is a novel biological form to treat cancer; CAR-T cell genetic engineering has positively revolutionized cancer immunotherapy. In this paper, we review the latest developments in CAR-T in cancer treatment. We present the structure of the different generations and variants of CAR-T cells including TRUCK (T cells redirected for universal cytokine killing. We explain the approaches of the CAR-T cells manufactured ex vivo and in vivo. Moreover, we describe the limitations and areas of opportunity for this immunotherapy and the current challenges of treating hematological and solid cancer using CAR-T technology as well as its constraints and engineering approaches. We summarize other immune cells that have been using CAR technology, such as natural killer (NK), macrophages (M), and dendritic cells (DC). We conclude that CAR-T cells have the potential to treat not only cancer but other chronic diseases.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive , T-Lymphocytes , Neoplasms/genetics , Cell- and Tissue-Based Therapy
2.
Pharmaceutics ; 15(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37765201

ABSTRACT

Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.

3.
Microb Cell Fact ; 22(1): 61, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37004064

ABSTRACT

Research development in the precise control of gene expression in plant cells is an emerging necessity that would lead to the elucidation of gene function in these biological systems. Conventional gene-interfering techniques, such as micro-RNA and short interfering RNA, have limitations in their ability to downregulate gene expression in plants within short time periods. However, nanotechnology provides a promising new avenue with new tools to overcome these challenges. Here, we show that functionalized gold nanoparticles, decorated with sense and antisense oligonucleotides (FANSAO), can serve as a remote-control optical switch for gene interference in photosynthetic plant cells. We demonstrate the potential of employing LEDs as optimal light sources to photothermally dehybridize the oligonucleotides on the surface of metallic nanostructures, consequently inducing regulation of gene expression in plant cells. We show the efficiency of metallic nanoparticles in absorbing light from an LED source and converting it to thermal energy, resulting in a local temperature increase on the surface of the gold nanoparticles. The antisense oligonucleotides are then released due to the opto-thermal heating of the nanobiosystem composed of the metallic nanoparticles and the sense-antisense oligonucleotides. By applying this approach, we silenced the Carnitine Acyl Carnitine Translocase genes at 90.7%, resulting in the accumulation of lipid bodies in microalgae cells. These results exhibit the feasibility of using functionalized gold nanoparticles with sense and antisense oligonucleotides to enhance nucleic acid delivery efficiency and, most importantly, allow for temporal control of gene silencing in plant cells. These nanobiosystems have broad applications in the development and biosynthesis of biofuels, pharmaceuticals, and specialized chemicals.


Subject(s)
Chlamydomonas reinhardtii , Metal Nanoparticles , Metal Nanoparticles/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Gold/chemistry , Gene Silencing , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Lipids
4.
Oncoimmunology ; 11(1): 2054305, 2022.
Article in English | MEDLINE | ID: mdl-35402082

ABSTRACT

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in women worldwide. Recent advances in the field of immuno-oncology demonstrate the beneficial immunostimulatory effects of the induction of immunogenic cell death (ICD). ICD increases tumor infiltration by T cells and is associated with improved prognosis in patients affected by triple negative breast cancer (TNBC) with residual disease. The aim of this study was to evaluate the antitumoral effect of PKHB1, a thrombospondin-1 peptide mimic, against breast cancer cells, and the immunogenicity of the cell death induced by PKHB1 in vitro, ex vivo, and in vivo. Our results showed that PKHB1 induces mitochondrial alterations, ROS production, intracellular Ca2+ accumulation, as well calcium-dependent cell death in breast cancer cells, including triple negative subtypes. PKHB1 has antitumor effect in vivo leading to a reduction of tumor volume and weight and promotes intratumoral CD8 + T cell infiltration. Furthermore, in vitro, PKHB1 induces calreticulin (CALR), HSP70, and HSP90 exposure and release of ATP and HMGB1. Additionally, the killed cells obtained after treatment with PKHB1 (PKHB1-KC) induced dendritic cell maturation, and T cell antitumor responses, ex vivo. Moreover, PKHB1-KC in vivo were able to induce an antitumor response against breast cancer cells in a prophylactic application, whereas in a therapeutic setting, PKHB1-KC induced tumor regression; both applications induced a long-term antitumor response. Altogether our data shows that PKHB1, a thrombospondin-1 peptide mimic, has in vivo antitumor effect and induce immune system activation through immunogenic cell death induction in breast cancer cells.


Subject(s)
Breast Neoplasms , Immunogenic Cell Death , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Death , Cell Line, Tumor , Female , Humans , Peptides/pharmacology
5.
PeerJ ; 7: e7759, 2019.
Article in English | MEDLINE | ID: mdl-31579619

ABSTRACT

BACKGROUND: IMMUNEPOTENT-CRP® (I-CRP) is a bovine dialyzable leukocyte extract containing transfer factor. It is a cost-effective, unspecific active immunotherapy that has been used in patients with non-small cell lung cancer (NSCLC) as an adjuvant to reduce the side-effects of chemotherapy and radiotherapy, and has shown cytotoxic activity in vitro on different cancer cell lines. However, its mechanism of action against lung cancer cells has not been assessed. Therefore, the objective of this work was to assess the cytotoxic mechanism of I-CRP on lung cancer cell lines. METHODS: We assessed cell viability through MTT assay on the NSCLC cell lines A549, A427, Calu-1, and INER-51 after treatment with I-CRP. To further understand the mechanisms of cell viability diminution we used fluorescence-activated cell sorting to evaluate cell death (annexin-V and propidium iodide [PI] staining), cell cycle and DNA degradation (PI staining), mitochondrial alterations (TMRE staining), and reactive oxygen species (ROS) production (DCFDA staining). Additionally, we evaluated caspase and ROS dependence of cell death by pretreating the cells with the pan-caspase inhibitor Q-VD-OPH and the antioxidant N-acetylcysteine (NAC), respectively. RESULTS: Our data shows that I-CRP is cytotoxic to NSCLC cell lines in a dose and time dependent manner, without substantial differences between the four cell lines tested (A549, A427, Calu-1, and INER-51). Cytotoxicity is induced through regulated cell death and cell cycle arrest induction. I-CRP-induced cell death in NSCLC cell lines is characterized by DNA degradation, mitochondrial damage, and ROS production. Moreover, cell death is independent of caspases but relies on ROS production, as it is abrogated with NAC. CONCLUSION: Altogether, these results improve the knowledge about the cytotoxic activity of I-CRP on NSCLC cells, indicating that cell death, cell cycle arrest, DNA degradation and mitochondrial damage are important features, while ROS play the main role for I-CRP mediated cytotoxicity in lung cancer cells.

6.
J Oncol ; 2019: 9852361, 2019.
Article in English | MEDLINE | ID: mdl-31275386

ABSTRACT

Acute lymphocytic leukemia (ALL) is the most common pediatric cancer. Currently, treatment options for patients with relapsed and refractory ALL mostly rely on immunotherapies. However, hematological cancers are commonly associated with a low immunogenicity and immune tolerance, which may contribute to leukemia relapse and the difficulties associated with the development of effective immunotherapies against this disease. We recently demonstrated that PKHB1, a TSP1-derived CD47 agonist peptide, induces immunogenic cell death (ICD) in T cell ALL (T-ALL). Cell death induced by PKHB1 on T-ALL cell lines and their homologous murine, L5178Y-R (T-murine tumor lymphoblast cell line), induced damage-associated molecular patterns (DAMPs) exposure and release. Additionally, a prophylactic vaccination with PKHB1-treated L5178Y-R cells prevented tumor establishment in vivo in all the cases. Due to the immunogenic potential of PKHB1-treated cells, in this study we assessed their ability to induce antitumor immune responses ex vivo and in vivo in an established tumor. We first confirmed the selectivity of cell death induced by PKBH1 in tumor L5178Y-R cells and observed that calreticulin exposure increased when cell death increased. Then, we found that the tumor cell lysate (TCL) obtained from PKHB1-treated L5178YR tumor cells (PKHB1-TCL) was able to induce, ex vivo, dendritic cells maturation, cytokine production, and T cell antitumor responses. Finally, our results show that in vivo, PKHB1-TCL treatment induces tumor regression in syngeneic mice transplanted with L5178Y-R cells, increasing their overall survival and protecting them from further tumor establishment after tumor rechallenge. Altogether our results highlight the immunogenicity of the cell death induced by PKHB1 activation of CD47 as a potential therapeutic tool to overcome the low immunogenicity and immune tolerance in T-ALL.

7.
Biomed Res Int ; 2019: 8560527, 2019.
Article in English | MEDLINE | ID: mdl-31275985

ABSTRACT

Cuphea aequipetala (C. aequipetala) has been used in Mexican traditional medicine since prehispanic times to treat tumors. In this paper, we evaluated the antiproliferative and apoptotic effect of the methanolic and aqueous extracts of C. aequipetala on several cancer cell lines including the B16F10 cell line of murine melanoma and carried a murine model assay. In vitro assay analyzed the effect in the cellular cycle and several indicators of apoptosis, such as the caspase-3 activity, DNA fragmentation, phosphatidylserine exposure (Annexin-V), and induction of cell membrane permeabilization (propidium iodide) in the B16F10 cells. In vivo, groups of C57BL/6 female mice were subcutaneously injected with 5x105 B16F10 cells and treated with 25 mg/mL of C. aequipetala extracts via oral. Aqueous and methanolic extracts showed a cytotoxic effect in MCF-7, HepG2, and B16F10 cell lines. The methanolic extract showed more antiproliferative effect with less concentration, and for this reason, the in vitro experiments were only continued with it. This extract was able to induce accumulation of cells on G1 phase of the cell cycle; moreover, it was able to induce DNA fragmentation and increase the activity of caspase-3 in B16F10 cells. On the other hand, in the murine model of melanoma, the aqueous extract showed a greater reduction of tumor size in comparison with the methanolic extract, showing an 80% reduction versus one of around 31%, both compared with the untreated control, indicating a better antitumor effect of C. aequipetala aqueous extract via oral administration. In conclusion, the in vitro data showed that both C. aequipetala extracts were able to induce cytotoxicity through the apoptosis pathway in B16F10 cells, and in vivo, the oral administration of aqueous extract reduces the melanoma tumoral mass, suggesting an important antitumoral effect and the perspective to search for effector molecules involved in it.


Subject(s)
Cuphea/chemistry , Melanoma, Experimental/drug therapy , Plant Extracts/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Female , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Melanoma, Experimental/pathology , Methanol/chemistry , Mice, Inbred C57BL , Plant Extracts/pharmacology , Water/chemistry
8.
Cancer Sci ; 110(1): 256-268, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30460757

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis derived from its genetic heterogeneity, which translates to a high chemoresistance. Recently, our workgroup designed thrombospondin-1-derived CD47 agonist peptides and demonstrated their ability to induce cell death in chronic lymphocytic leukemia. Encouraged by these promising results, we evaluated cell death induced by PKHB1 (the first-described serum-stable CD47-agonist peptide) on CEM and MOLT-4 human cell lines (T-ALL) and on one T-murine tumor lymphoblast cell-line (L5178Y-R), also assessing caspase and calcium dependency and mitochondrial membrane potential. Additionally, we evaluated selectivity for cancer cell lines by analyzing cell death and viability of human and murine non-tumor cells after CD47 activation. In vivo, we determined that PKHB1-treatment in mice bearing the L5178Y-R cell line increased leukocyte cell count in peripheral blood and lymphoid organs while recruiting leukocytes to the tumor site. To analyze whether CD47 activation induced immunogenic cell death (ICD), we evaluated damage-associated molecular patterns (DAMP) exposure (calreticulin, CRT) and release (ATP, heat shock proteins 70 and 90, high-mobility group box 1, CRT). Furthermore, we gave prophylactic antitumor vaccination, determining immunological memory. Our data indicate that PKHB1 induces caspase-independent and calcium-dependent cell death in leukemic cells while sparing non-tumor murine and human cells. Moreover, our results show that PKHB1 can induce ICD in leukemic cells as it induces CRT exposure and DAMP release in vitro, and prophylactic vaccinations inhibit tumor establishment in vivo. Together, our results improve the knowledge of CD47 agonist peptides potential as therapeutic tools to treat leukemia.


Subject(s)
Apoptosis/drug effects , CD47 Antigen/agonists , Membrane Potential, Mitochondrial/drug effects , Peptides/pharmacology , Animals , CD47 Antigen/metabolism , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Female , Humans , Kaplan-Meier Estimate , Leukemia, Experimental/drug therapy , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Mice, Inbred BALB C , Peptides/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thrombospondin 1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...