Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer ; 113(5): 1080-9, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18618575

ABSTRACT

BACKGROUND: Mutations in the Wilms tumor (WT) suppressor 1 gene (WT1) and the cadherin-associated protein beta1 gene (CTNNB1) are found predominantly in stromal type WT, defining a genetic subgroup. The clinical relevance of these mutations remains to be determined. METHODS: A long-term follow-up study was performed for 71 patients (International Society of Pediatric Oncology Study 9/Society for Pediatric Oncology; n = 77 tumors) with known molecular genetic status. Eight patients had bilateral disease, including 2 patients with a WT in both kidneys and 5 patients with a WT in 1 kidney and nephrogenic rests (NRs) in the other kidney. The response to preoperative chemotherapy, relapses, metastases, metachronous tumor development, and deaths were evaluated with a median follow-up of 12 years and 4 months. RESULTS: Nineteen patients (n = 24 tumors) had WT1 mutations, and 16 were constitutional mutations. Three patients with germline mutations had second tumor events: Two patients developed a WT in the kidney with NRs 3 years and 11 years after the first tumor; and 1 patient developed second tumors after 2 years, 1 in the kidney with a previous WT and 1 in the kidney with a previous NR. Eighteen of the WT1 mutant tumors were analyzed for CTNNB1 mutations, and all had mutations. A poor volumetric response (progression and <50% reduction) was observed in all patients who had tumors with a WT1 mutation and in 23 of 52 nonmutant tumors. CONCLUSIONS: Patients with WT1 germline mutations had an increased risk for bilateral disease and second tumor events. Therefore, the authors concluded that tumor surveillance until adulthood should be considered. Although tumors with both WT1 and CTNNB1 mutations had a poor volumetric response, there was no significant difference in overall survival in this cohort of patients with and without WT1 mutations.


Subject(s)
Genes, Wilms Tumor , Kidney Neoplasms/genetics , Wilms Tumor/genetics , beta Catenin/genetics , Follow-Up Studies , Humans , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Mutation , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/mortality , Treatment Outcome , Wilms Tumor/mortality , Wilms Tumor/pathology , Wilms Tumor/therapy
2.
J Med Genet ; 44(6): 393-6, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17551084

ABSTRACT

We describe a patient with a novel WT1 pS50X germ line mutation, who developed bilateral Wilms tumours, both with stromal-type histology. Both tumours showed loss of the wild type WT1 allele (loss of heterozygosity (LOH)) and a tumour specific mutation in catenin beta1 (CTNNB1), S45P in the left and Delta45S in the right tumour. Molecular analysis of microdissected cells from the left tumour revealed the same S45P CTNNB1 mutation in blastema, tubuli, stroma and muscle, and a different CTNNB1 mutation (T41A) in stromal cells isolated from another area of the same slide. Microdissection of two areas of muscle cells from the right tumour revealed the same Delta45S mutation and no CTNNB1 mutation nor LOH of WT1 in normal kidney cells. One year later, the patient developed a new set of bilateral tumours. Both tumours showed LOH of the wild type WT1 allele, but different CTNNB1 mutations as in the first tumours: S45C on the right and S45F on the left side, demonstrating that these developed independently and are not relapses. This case demonstrates the high risk for the development of Wilms tumours in patients with germ line truncation mutations.


Subject(s)
Germ-Line Mutation/genetics , WT1 Proteins/genetics , Wilms Tumor/genetics , beta Catenin/genetics , Base Sequence , DNA Mutational Analysis , Exons/genetics , Female , Humans , Infant , Molecular Sequence Data , Radiography , Wilms Tumor/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...