Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(28): 10965-10972, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37399244

ABSTRACT

In the present work, the study of the unusual interaction between copper hexafluoroacetylacetonate and the diacetyliminoxyl radical resulted in two discoveries from different fields: the determination of the oxime radical spatial structure and the introduction of an oxime radical into the field of molecular magnetic material design. Oxime radicals are key plausible intermediates in the processes of oxidative CH-functionalization and in the synthesis of functionalized isoxazolines from oximes. Due to the lack of X-ray diffraction data for oxime radicals, the knowledge about their structure is based mainly on indirect approaches, spectroscopic methods (electron paramagnetic resonance and IR), and quantum chemical calculations. The structure of the oxime radical was determined for the first time by stabilizing the diacetyliminoxyl radical in the form of its complex with copper (II) hexafluoroacetylacetonate (Cu(hfac)2), followed by single-crystal X-ray diffraction analysis. Although oxime radicals are known to undergo oxidative coupling with acetylacetonate ligands in transition-metal complexes, a complex is formed with intact hfac ligands. X-ray diffraction studies have shown that the oxime radical is coordinated with copper ions through the oxygen atoms of the carbonyl groups without the direct involvement of the C═N-O• radical moiety. The structure of the coordinated diacetyliminoxyl is in good agreement with the density functional theory (DFT) prediction for free diacetyliminoxyl due to the very weak interaction of the radical molecule with copper ions. Remarkably, both weak ferromagnetic and antiferromagnetic interactions between Cu (II) and oxime radicals have been revealed by modeling the temperature dependence of magnetic susceptibility and confirmed by DFT calculations, rendering diacetyliminoxyl a promising building block for the design of molecular magnets.

2.
Polymers (Basel) ; 13(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34961003

ABSTRACT

A versatile equilibrium method for synthesizing ladder-like polyphenylsilsesquioxanes (L-PPSQs) with various molecular weights (from 4 to 500 kDa) in liquid ammonia was developed. The effect of diverse parameters, such as temperature, monomer concentration, reaction time, addition or removal of water from the reaction medium, on the polycondensation process was determined. The molecular weight characteristics and structure of the L-PPSQ elements obtained were determined by GPC, 1H, 29Si NMR, IR spectroscopy, viscometry, and PXRD methods. The physicochemical properties of L-PPSQs were determined by TGA and mechanical analyses.

3.
Int J Mol Sci ; 21(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255944

ABSTRACT

Imatinib, one of the most used therapeutic agents to treat leukemia, is an inhibitor that specifically blocks the activity of tyrosine kinases. The molecule of imatinib is flexible and contains several functional groups able to take part in H-bonding and hydrophobic interactions. Analysis of molecular conformations for this drug was carried out using density functional theory calculations of rotation potentials along single bonds and by analyzing crystal structures of imatinib-containing compounds taken from the Cambridge Structural Database and the Protein Data Bank. Rotation along the N-C bond in the region of the amide group was found to be the reason for two relatively stable molecular conformations, an extended and a folded one. The role of various types of intermolecular interactions in stabilization of the particular molecular conformation was studied in terms of (i) the likelihood of H-bond formation, and (ii) their contribution to the Voronoi molecular surface. It is shown that experimentally observed hydrogen bonds are in accord with the likelihood of their formation. The number of H-bonds in ligand-receptor complexes surpasses that in imatinib salts due to the large number of donors and acceptors of H-bonding within the binding pocket of tyrosine kinases. Contribution of hydrophilic intermolecular interactions to the Voronoi molecular surface is similar for both conformations, while π...π stacking is more typical for the folded conformation of imatinib.


Subject(s)
Imatinib Mesylate/chemistry , Analysis of Variance , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Protein-Tyrosine Kinases/chemistry
4.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 2): 192-196, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32071745

ABSTRACT

Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethyl-ene glycol in daylight afforded [3,4-bis-(phenyl-ethyn-yl)cyclo-butane-1,2-di-yl)bis-(pyridin-2-yl-methanone], C32H22N2O2 (3), while (E)-5-(4-methyl-phen-yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclo-butane ring adopts an rctt conformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...