Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 127(4): EL172-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20369986

ABSTRACT

Determining the absolute onset time of reflections in an acoustic impulse response (IR) has applications for both subjective and physical acoustics problems. Although computationally simple, a first-order energetic analysis of the IR can lead to false-positive identification of reflections. This letter reports on a method to determine reflection onset timings using a modified running local kurtosis analysis to identify regions in the IR where the distribution is non-normal. IRs from both real and virtual rooms are used to validate the method and to find optimum analysis window sizes.


Subject(s)
Acoustics , Facility Design and Construction , Models, Theoretical , Signal Processing, Computer-Assisted , Sound , Computer Simulation , Reproducibility of Results , Sound Spectrography , Time Factors
2.
Can J Anaesth ; 53(1): 26-32, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16371606

ABSTRACT

PURPOSE: The variable-pitch pulse oximeter is an important intraoperative patient monitor. Our ability to hear its auditory signal depends on its acoustical properties and our hearing. This study quantitatively describes the audio spectrum and sound pressure levels of the monitoring tones produced by five variable-pitch pulse oximeters. METHODS: We compared the Datex-Ohmeda Capnomac Ultima, Hewlett-Packard M1166A, Datex-Engstrom AS/3, Ohmeda Biox 3700, and Datex-Ohmeda 3800 oximeters. Three machines of each of the five models were assessed for sound pressure levels (using a precision sound level meter) and audio spectrum (using a hanning windowed fast Fourier trans-form of three beats at saturations of 99%, 90%, and 85%). RESULTS: The widest range of sound pressure levels was produced by the Hewlett-Packard M1166A (46.5 +/- 1.74 dB to 76.9 +/- 2.77 dB). The loudest model was the Datex-Engstrom AS/3 (89.2 +/- 5.36 dB). Three oximeters, when set to the lower ranges of their volume settings, were indistinguishable from background operating room noise. Each model produced sounds with different audio spectra. Although each model produced a fundamental tone with multiple harmonic overtones, the number of harmonics varied with each model; from three harmonic tones on the Hewlett-Packard M1166A, to 12 on the Ohmeda Biox 3700. There were variations between models, and individual machines of the same model with respect to the fundamental tone associated with a given saturation. CONCLUSION: There is considerable variance in the sound pressure and audio spectrum of commercially-available pulse oximeters. Further studies are warranted in order to establish standards.


Subject(s)
Oximetry/instrumentation , Oximetry/standards , Sound , Equipment Design , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...