Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(7): 9186-9197, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225530

ABSTRACT

We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide feedback bandwidth for fiber noise compensation, which allows constructing optical lattice clock networks based on the master-slave configuration. We developed the laser repeater stations based on planar lightwave circuits to significantly reduce the interferometer noise for improved link stability. We implemented a 240-km-long cascaded link in a UTokyo-NTT-UTokyo loop using light sent from RIKEN via a 30-km-long link. In environments with large fiber noise, the link instability is 3 × 10-16 at an averaging time of 1 s and reaches 1 × 10-18 at 2,600 s.

2.
Phys Rev Lett ; 121(26): 263202, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636149

ABSTRACT

We experimentally investigate the lattice-induced light shift by the electric-quadrupole (E2) and magnetic-dipole (M1) polarizabilities and the hyperpolarizability in Sr optical lattice clocks. Precise control of the axial as well as the radial motion of atoms in a one-dimensional lattice allows observing the E2-M1 polarizability difference. Measured polarizabilities determine an operational lattice depth to be 72(2)E_{R}, where the total light shift cancels to the 10^{-19} level, over a lattice-intensity variation of about 30%. This operational trap depth and its allowable intensity range conveniently coincide with experimentally feasible operating conditions for Sr optical lattice clocks.

3.
Phys Rev Lett ; 114(23): 230801, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196788

ABSTRACT

We report on a frequency ratio measurement of a (199)Hg-based optical lattice clock referencing a (87)Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2×10(-17) for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60(22) with a fractional uncertainty of 8.4×10(-17), which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...