Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0261250, 2021.
Article in English | MEDLINE | ID: mdl-34914786

ABSTRACT

Many fundamental problems in data mining can be reduced to one or more NP-hard combinatorial optimization problems. Recent advances in novel technologies such as quantum and quantum-inspired hardware promise a substantial speedup for solving these problems compared to when using general purpose computers but often require the problem to be modeled in a special form, such as an Ising or quadratic unconstrained binary optimization (QUBO) model, in order to take advantage of these devices. In this work, we focus on the important binary matrix factorization (BMF) problem which has many applications in data mining. We propose two QUBO formulations for BMF. We show how clustering constraints can easily be incorporated into these formulations. The special purpose hardware we consider is limited in the number of variables it can handle which presents a challenge when factorizing large matrices. We propose a sampling based approach to overcome this challenge, allowing us to factorize large rectangular matrices. In addition to these methods, we also propose a simple baseline algorithm which outperforms our more sophisticated methods in a few situations. We run experiments on the Fujitsu Digital Annealer, a quantum-inspired complementary metal-oxide-semiconductor (CMOS) annealer, on both synthetic and real data, including gene expression data. These experiments show that our approach is able to produce more accurate BMFs than competing methods.


Subject(s)
Data Mining/methods , Algorithms , Cluster Analysis , Computers/trends , Models, Theoretical
2.
PLoS One ; 15(2): e0227538, 2020.
Article in English | MEDLINE | ID: mdl-32053622

ABSTRACT

A very important problem in combinatorial optimization is the partitioning of a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities. This drastically increases the solution space for heuristics to work on, compared to traditional graph partitioning problems. In many of the scientific domains in which graphs are used, there is the need to have the ability to partition a graph into communities with the "highest quality" possible since the presence of even small isolated communities can become crucial to explain a particular phenomenon. We have explored community detection using the power of quantum annealers, and in particular the D-Wave 2X and 2000Q machines. It turns out that the problem of detecting at most two communities naturally fits into the architecture of a quantum annealer with almost no need of reformulation. This paper addresses a systematic study of detecting two or more communities in a network using a quantum annealer.


Subject(s)
Algorithms , Quantum Theory , Martial Arts , Models, Molecular , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...