Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(37): 10280-10284, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37772125

ABSTRACT

Functional molecular inorganic-organic hybrids of lacunary polyoxometalates and organic ligands attract much attention for advanced material applications. However, the inherent instability of lacunary polyoxomolybdates hinders the synthesis of hybrids and their utilization. Herein, we present a viable approach for the synthesis of molecular hybrids of trivacant lacunary Keggin-type polyoxomolybdates and multidentate organic ligands including carboxylates and phosphonates, which is based on the use of a lacunary structure stabilized by removable pyridyl ligands as a starting material.

2.
Environ Biosafety Res ; 8(4): 183-202, 2009.
Article in English | MEDLINE | ID: mdl-20883658

ABSTRACT

With the extensive adoption of transgenic crops, an understanding of transgene flow is essential to manage gene flow to non-GM crops. Thus, a flexible and accurate numerical model is required to assess gene flow through pollen dispersal. A three-dimensional atmospheric model combined with a diffusion transport model would be a useful tool for predicting pollen dispersal since it would be flexible enough to incorporate the effects of factors such as the spatial arrangement of crop combinations, land use, topography, windbreaks, and buildings. We applied such a model to field measurements of gene flow between two adjacent maize (Zea mays) cultivars, with suppression effects due to windbreaks, in an experimental cornfield in Japan. This combined model reproduced the measured cross-pollination distribution quite well in the case of maize plots with plant windbreaks slightly taller than the maize and without windbreaks, but the model underestimated the effect of a 6-m-tall windbreak net beyond 25 m from the donor pollen source on cross-pollination. The underestimation was most probably due to the problem of assimilated wind data. The model showed that the 6-m-tall windbreak and the plant wind break suppressed average cross-pollination rate by about 60% and 30%, respectively. Half-tall and coarser mesh windbreak net suppressed cross-pollination rates by 40% by reducing the swirl of donor pollen by reduced wind speed.


Subject(s)
Pollen/physiology , Pollination/physiology , Wind , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...