Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 13(4): 997-1001, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35060736

ABSTRACT

The Landau damping (LD) mechanism of the localized surface plasmon (LSP) decay is studied for the hybrid nanoplasmonic (metal core/dielectric shell) structures. It is shown that LD in hybrid structures is strongly affected by the permittivity and the electron effective mass in the dielectric shell in accordance with previous observations by Kreibig, and the strength of LD can be enhanced by an order of magnitude for some combinations of permittivity and effective mass. The physical reason for this effect is identified as an electron spillover into the dielectric where the electric field is higher than that in the metal and the presence of quasi-discrete energy levels in the dielectric. The theory indicates that the transition absorption at the metal-dielectric interface is a dominant contribution to LD in such hybrid structures. Thus, by judicious selection of dielectric material and its thickness, one can engineer decay rates and hot carrier production for important applications, such as photodetection and photochemistry.

2.
Opt Lett ; 46(3): 568-571, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528436

ABSTRACT

Internal surface photoemission of electrons from 1D crystal into a barrier with participation of Tamm state (TS) at the interface crystal barrier is considered theoretically for the first time, to the best of our knowledge. It is shown that resonant tunneling of electrons through a TS could lead to substantial enhancement of the quantum efficiency and lowering the red border to a value defined by the TS. In contrast to the Fowler quadratic law, the photocurrent scales linearly with photon energy near the red border. The results suggest that the efficiency of hot electron generation with plasmonic metal nanoparticles could reach several tens of percent, which is very attractive for application in energy conversion technologies such as water splitting.

3.
Opt Lett ; 45(9): 2644-2647, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356837

ABSTRACT

Landau damping in the metal nanosphere is considered beyond the quasistatic approximation with the use of the exact Mie theory when an incident plane wave can excite not only the dipole mode but also higher-order modes. In resonance approximation, when one considers excitation of a single mode, the analytical formula for the Landau damping coefficient for various modes has been derived. It was demonstrated that the simultaneous excitation of several eigenmodes, which are overlapped in the frequency domain, can lead to substantial correction of the Landau damping coefficients for the modes.

4.
Opt Lett ; 44(6): 1415-1418, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874664

ABSTRACT

We analytically calculate the optical emission spectrum of nanolasers and nano-LEDs based on a model of many incoherently pumped two-level emitters in a cavity. At low pump rates, we find two peaks in the spectrum for large coupling strengths and numbers of emitters. We interpret the double-peaked spectrum as a signature of collective Rabi splitting, and discuss the difference between the splitting of the spectrum and the existence of two eigenmodes. We show that an LED will never exhibit a split spectrum, even though it can have distinct eigenmodes. For systems where the splitting is possible, we show that the two peaks merge into a single one when the pump rate is increased. Finally, we compute the linewidth of the systems, and discuss the influence of inter-emitter correlations on the lineshape.

5.
Nanoscale ; 8(30): 14573-9, 2016 Aug 14.
Article in English | MEDLINE | ID: mdl-27427159

ABSTRACT

A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.

6.
Nano Lett ; 15(9): 5811-8, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26214575

ABSTRACT

Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

7.
Nanoscale ; 6(9): 4716-27, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24658421

ABSTRACT

We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles--surface and volume ones--and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ∼5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

8.
Opt Express ; 17(4): 2188-97, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19219122

ABSTRACT

Chirped pulse scheme is shown to be highly effective to attain large tunable time shifts via slow and fast light for an ultra-short pulse through a semiconductor optical amplifier (SOA). We show for the first time that advance can be turned into delay by simply reversing the sign of the chirp. A large continuously tunable advance-bandwidth product (ABP) of 4.7 and delay-bandwidth product (DBP) of 4.0 are achieved for a negatively and positively chirped pulse in the same device, respectively. We show that the tunable time shift is a direct result of self-phase modulation (SPM). Theoretical simulation agrees well with experimental results. Further, our simulation results show that by proper optimization of the SOA and chirper design, a large continuously tunable DBP of 55 can be achieved.


Subject(s)
Computer-Aided Design , Models, Theoretical , Optical Devices , Semiconductors , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(4 Pt 2): 046607, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17501007

ABSTRACT

Propagation, transmission and reflection properties of linearly polarized plane waves and arbitrarily short electromagnetic pulses in one-dimensional dispersionless dielectric media possessing an arbitrary space-time dependence of the refractive index are studied by using a two-component, highly symmetric version of Maxwell's equations. The use of any slow varying amplitude approximation is avoided. Transfer matrices of sharp nonstationary interfaces are calculated explicitly, together with the amplitudes of all secondary waves produced in the scattering. Time-varying multilayer structures and spatiotemporal lenses in various configurations are investigated analytically and numerically in a unified approach. Several effects are reported, such as pulse compression, broadening and spectral manipulation of pulses by a spatiotemporal lens, and the closure of the forbidden frequency gaps with the subsequent opening of wave number band gaps in a generalized Bragg reflector.

10.
Opt Express ; 15(24): 15863-7, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550872

ABSTRACT

Ultra fast non-linear processes are used to achieve an advance of 2 ps for a 600 fs pulse propagating through two SOAs in series. This corresponding 3.3-pulse advance is tuned continuously by changing the current applied to the devices. We propose an experimental scheme that uses a single SOA in a loop to emulate the propagation of pulse through multiple cascaded SOAs.

11.
Opt Express ; 15(26): 17631-8, 2007 Dec 24.
Article in English | MEDLINE | ID: mdl-19551058

ABSTRACT

We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.


Subject(s)
Amplifiers, Electronic , Optical Devices , Semiconductors , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
12.
Opt Express ; 14(26): 12968-75, 2006 Dec 25.
Article in English | MEDLINE | ID: mdl-19532190

ABSTRACT

Tunable delays in semiconductor optical amplifiers are achieved via four wave mixing between a strong pump beam and a modulated probe beam. The delay of the probe beam can be controlled both electrically, by changing the SOA bias, and optically, by varying the pump power or the pump-probe detuning. For sinusoidal modulated signal at 0.5 GHz, a tunable delay of 1.6 ns is achieved. This corresponds to a RF phase change of 1.6 pi. For 1.3 ns optical pulses propagating through the SOA a delay of 0.59 ns is achieved corresponding to a delay-bandwidth product exceeding 0.45. For both the cases, slow light and superluminal light are observed as the pump-probe detuning is varied.

SELECTION OF CITATIONS
SEARCH DETAIL
...