Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722077

ABSTRACT

Nowadays, there is a growing trend in smart cities. Therefore, Terrestrial and Internet of Things (IoT) enabled Underwater Wireless Sensor Networks (TWSNs and IoT-UWSNs) are mostly used for observing and communicating via smart technologies. For the sake of collecting the desired information from the underwater environment, multiple acoustic sensors are deployed with limited resources, such as memory, battery, processing power, transmission range, etc. The replacement of resources for a particular node is not feasible due to the harsh underwater environment. Thus, the resources held by the node needs to be used efficiently to improve the lifetime of a network. In this paper, to support smart city vision, a terrestrial based "Away Cluster Head with Adaptive Clustering Habit" (ACH) 2 is examined in the specified three dimensional (3-D) region inside the water. Three different cases are considered, which are: single sink at the water surface, multiple sinks at water surface,, and sinks at both water surface and inside water. "Underwater (ACH) 2 " (U-(ACH) 2 ) is evaluated in each case. We have used depth in our proposed U-(ACH) 2 to examine the performance of (ACH) 2 in the ocean environment. Moreover, a comparative analysis is performed with state of the art routing protocols, including: Depth-based Routing (DBR) and Energy Efficient Depth-based Routing (EEDBR) protocol. Among all of the scenarios followed by case 1 and case 3, the number of packets sent and received at sink node are maximum using DEEC-(ACH) 2 protocol. The packets drop ratio using TEEN-(ACH) 2 protocol is less when compared to other algorithms in all scenarios. Whereas, for dead nodes DEEC-(ACH) 2 , LEACH-(ACH) 2 , and SEP-(ACH) 2 protocols' performance is different for every considered scenario. The simulation results shows that the proposed protocols outperform the existing ones.

2.
Comput Biol Med ; 100: 27-35, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29975851

ABSTRACT

The baroreflex being a key modulator of cardiovascular control ensures adequate blood pressure regulation under orthostatic stress which otherwise may cause severe hypotension. Contrary to conventional baroreflex sensitivity indices derived across a-priori traditional frequency bands, the present study is aimed at proposing new indices for the assessment of baroreflex drive which follows active (supine to stand-up) and passive (supine to head-up tilt) postural changes. To achieve this, a novel system identification approach of principal dynamic modes (PDM) was utilized to extract data-adaptive frequency components of closed-loop interactions between beat-to-beat interval and systolic blood pressure recorded from 10 healthy humans. We observed that the gain of low-pass global PDM of cardiac arm (:feedback reflex loop, mediated by pressure sensors to adjust heart rate in response to arterial blood pressure), and 0.2 Hz global PDM of mechanical arm (:feed-forward pathways, originating changes in arterial blood pressure in response to heart rate variations) may function as potential markers to distinguish active and passive orthostatic tests in healthy subjects.


Subject(s)
Baroreflex/physiology , Blood Pressure/physiology , Heart Rate/physiology , Models, Cardiovascular , Posture/physiology , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...