Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genomics ; 45(12): 1489-1508, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37548884

ABSTRACT

The discovery of the first infectious variant in Wuhan, China, in December 2019, has posed concerns over global health due to the spread of COVID-19 and subsequent variants. While the majority of patients experience flu-like symptoms such as cold and fever, a small percentage, particularly those with compromised immune systems, progress from mild illness to fatality. COVID-19 is caused by a RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach involved utilizing immunoinformatic to identify vaccine candidates with multiple epitopes and ligand-binding regions in reported SARS-CoV-2 variants. Through analysis of the spike glycoprotein, we identified dominant epitopes for T-cells and B-cells, resulting in a vaccine construct containing two helper T-cell epitopes, six cytotoxic T-cell epitopes, and four linear B-cell epitopes. Prior to conjugation with adjuvants and linkers, all epitopes were evaluated for antigenicity, toxicity, and allergenicity. Additionally, we assessed the vaccine Toll-Like Receptors complex (2, 3, and 4). The vaccine construct demonstrated antigenicity, non-toxicity, and non-allergenicity, thereby enabling the host to generate antibodies with favorable physicochemical characteristics. Furthermore, the 3D structure of the B-cell construct exhibited a ProSA-web z-score plot with a value of -1.71, indicating the reliability of the designed structure. The Ramachandran plot analysis revealed that 99.6% of the amino acid residues in the vaccine subunit were located in the high favored observation region, further establishing its strong candidacy as a vaccination option.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Proteome , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , COVID-19 Vaccines/genetics , Reproducibility of Results , Viral Vaccines/chemistry , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...