Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 109(2): 116283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574446

ABSTRACT

The well known dermatophyte infections caused by Trichophyton species are an ambiguous problem to treat using the present arsenal of antifungals. This study expounds on the effect of inhibition of sphingolipid pathway on Trichophyton growth. Findings from the drug susceptibility assays suggest sphingolipid inhibition severely restricts the growth of T. interdigitale and T. tonsurans. The observed synergistic effects of combinations of sphingolipid inhibitor and conventional drugs provide a promising treatment strategy against Trichophyton infection.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Sphingolipids , Trichophyton , Antifungal Agents/pharmacology , Sphingolipids/biosynthesis , Trichophyton/drug effects , Humans , Drug Synergism , Tinea/microbiology , Tinea/drug therapy
2.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38444195

ABSTRACT

In this study, we explored the sphingolipid (SL) landscape in Candida auris, which plays pivotal roles in fungal biology and drug susceptibility. The composition of SLs exhibited substantial variations at both the SL class and molecular species levels among clade isolates. Utilizing principal component analysis, we successfully differentiated the five clades based on their SL class composition. While phytoceramide (PCer) was uniformly the most abundant SL class in all the isolates, other classes showed significant variations. These variations were not limited to SL class level only as the proportion of different molecular species containing variable number of carbons in fatty acid chains also differed between the isolates. Also a comparative analysis revealed abundance of ceramides and glucosylceramides in fluconazole susceptible isolates. Furthermore, by comparing drug-resistant and susceptible isolates within clade IV, we uncovered significant intraclade differences in key SL classes such as high PCer and low long chain base (LCB) content in resistant strains, underscoring the impact of SL heterogeneity on drug resistance development in C. auris. These findings shed light on the multifaceted interplay between genomic diversity, SLs, and drug resistance in this emerging fungal pathogen.


Subject(s)
Antifungal Agents , Candida , Antifungal Agents/pharmacology , Candida auris , Sphingolipids , Drug Resistance, Fungal , Microbial Sensitivity Tests
3.
Res Microbiol ; 174(7): 104087, 2023.
Article in English | MEDLINE | ID: mdl-37328042

ABSTRACT

Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.

4.
Oncol Lett ; 17(6): 5039-5049, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31186715

ABSTRACT

The present report describes work examining the manner in which nonmalignant bone marrow stromal cells prevent acute lymphoblastic leukemia (ALL) cell death. The initial focus was on the role of stromal cell-derived C-X-C motif chemokine 12 (CXCL12). Interference with CXCL12 production by stroma or blockade of its interactions with ALL by plerixafor did increase ALL cell death and in sensitive ALLs there was synergistic effect with conventional chemotherapy drugs. However, in contrast to most reports, there was considerable heterogeneity regarding the effect between 7 unique primary ALLs, with several exhibiting no sensitivity to CXCL12 blockade. The diversity in effect was not explained by differences in the expression of ALL cell surface receptors for CXCL12. The modest and variable effects of interference with CXCL12 on ALL led to the assessment of gene expression profiles of stromal cells and ALL cells. Gene set enrichment analysis identified pathways associated with metabolism and redox reactions as potentially important in the stromal cell: leukemia cell interaction. Exploratory imaging studies demonstrated bidirectional transfer of intracellular calcien-labelled molecules and also bidirectional transfer of mitochondria between stromal cells and ALL cells, providing potential means of metabolic interdependence of stromal cells and ALL cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...