Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297034

ABSTRACT

In this work, based on the multilevel approach, the features of the structure and properties of titanium alloy, formed during high-performance additive manufacturing by wire-feed electron beam technology, were studied. Methods of non-destructive X-ray control and tomography, along with optical and scanning electron microscopy, were used to study the structure at different scale levels of the sample material. The mechanical properties of the material under stress were revealed via the simultaneous observation of the peculiarities of deformation development, using a Vic 3D laser scanning unit. Using microstructural and macrostructural data, as well as fractography, the interrelations of structure and material properties caused by the technological features of the printing process and the composition of used welding wire were revealed.

2.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984213

ABSTRACT

This paper presents the results of uniaxial tensile tests on specimens of the hypoeutectic aluminum-silicon alloy A319. According to the results, the influence of surface treatment by pulsed electron beam on the mechanical properties of the material was determined. The peculiarities of deformation localization in the material caused by grinding of the surface layer material structure due to rapid crystallization during electron beam treatment were revealed. The surface treatment up to the depth of 100 µm leads to the formation of a fine dendritic columnar structure of silumin and to an increase in the plasticity of the samples. The influence of the surface treatment affects the increase in the deformation localization in the region of the stable concentrator before failure. The greatest increase in ductility and localization of deformation occurs during treatment with an energy density of 15 J/cm2. In the process of specimen deformation, unstable, metastable, and stable areas of plastic deformation localization are formed and replaced, and the formation of stable areas of localized plastic deformation, in which the specimen fails at the end of the test, can be detected at the initial stages of testing. In specimens, during the test in the zone of localized plastic deformation, bands are formed which pass through the entire surface of the specimen at an angle of 35 to 55 degrees to the tensile axis, and their development leads to the formation of stable zones of localized plastic deformation and to the failure of the specimen.

SELECTION OF CITATIONS
SEARCH DETAIL
...