Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(5): 6582-6598, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726176

ABSTRACT

A combination of advanced light engineering concepts enables a substantial improvement in photon extraction efficiency of micro-cavity-based single-photon sources in the telecom O-band at ∼1.3 µm. We employ a broadband bottom distributed Bragg reflector (DBR) and a top DBR formed in a dielectric micropillar with an additional circular Bragg grating in the lateral plane. This device design includes a doped layer in pin-configuration to allow for electric carrier injection. It provides broadband (∼8-10 nm) emission enhancement with an overall photon-extraction efficiency of ∼83% into the upper hemisphere and photon-extraction efficiency of ∼79% within numerical aperture NA=0.7. The efficiency of photon coupling to a single-mode fiber reaches 11% for SMF28 fiber (with NA=0.12), exceeds 22% for 980HP fiber (with NA=0.2) and reaches ∼40% for HNA fiber (with NA=0.42) as demonstrated by 3D finite-difference time-domain modeling.

2.
Phys Rev E ; 94(5-1): 052208, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967019

ABSTRACT

A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change ɛ and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an ɛ^{-1/2} power law provided that the rate of change is not too small. The effective time of the ES transition follows an ɛ^{-1} power law, but its first order correction in ln(ɛ) is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 1): 031606, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18517394

ABSTRACT

The effect of sidewall nucleation on nanowire morphology is studied theoretically. The model provides a semiquantitative description of nanowire radius as a function of its length and the distance from the surface. It is demonstrated that the wire shape critically depends on the diffusion flux of adatoms from the substrate and on the rate of direct impingement to the sidewalls. At high diffusion flux the wire shape is cylindrical. A decrease of diffusion from the surface leads to the onset of nucleation on the sidewalls resulting in the lateral extension and in the reduction of wire length. The wire shape changes from cylindrical to conical, because the supersaturation of adatoms driving the nucleation is higher at the wire foot than at the top. It is shown that the shape modification becomes pronounced at low growth temperatures. Theoretical results are used to model the experimentally observed shapes of GaAs and GaP wires, grown by Au-assisted molecular beam epitaxy at different temperatures.

4.
Rev Sci Instrum ; 78(4): 043106, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477648

ABSTRACT

Frequency multipliers based on superlattice (SL) devices as nonlinear elements have been developed as radiation sources for a terahertz (THz) laboratory spectrometer. Input frequencies of 100 and 250 GHz from backward wave oscillators have been multiplied up to the 11th harmonic, producing usable frequencies up to 2.7 THz. Even at these high frequencies the output power is sufficient for laboratory spectroscopy. Comparisons to conventional high-resolution microwave spectroscopy methods reveal several superior features of this new device such as very high line frequency accuracies, broadband tunability, high output power levels at odd harmonics of the input frequency up to high orders, and a robust applicability.


Subject(s)
Microwaves , Spectrum Analysis , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 1): 021603, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16605346

ABSTRACT

A theoretical model of nanowire formation by the vapor-liquid-solid mechanism during molecular beam epitaxy and related growth techniques is presented. The model unifies the conventional adsorption-induced model, the diffusion-induced model, and the model of nucleation-mediated growth on the liquid-solid interface. The concentration of deposit atoms in the liquid alloy, the nanowire diameter, and all other characteristics of the growth process are treated dynamically as functions of the growth time. The model provides theoretical length-diameter dependences of nanowires and the dependence of the nanowire length on the technologically controlled growth conditions, such as the surface temperature and the deposition thickness. In particular, it is shown that the length-diameter curves of nanowires might convert from decreasing to increasing at a certain critical diameter and that the nanowires taper when their length becomes comparable with the adatom diffusion length on the sidewalls. The theoretical dependence of the nanowire morphology on its lateral size and length and on the surface temperature are compared to the available experimental data obtained recently for Si and nanowires.

6.
Opt Lett ; 31(10): 1444-6, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16642133

ABSTRACT

A quantum-dot-based saturable absorber has been demonstrated to initiate the generation of femtosecond pulses from a passively mode-locked solid-state laser. Control and tuning of the pulse duration from 58 ps to 158 fs was achieved. The 158 fs transform-limited pulses at 1280 nm are the shortest pulses that were produced from the Cr:forsterite laser passively mode locked by an InAs/InGaAs quantum-dot semiconductor saturable absorber mirror.

7.
Phys Rev Lett ; 87(27 Pt 1): 277401, 2001 Dec 31.
Article in English | MEDLINE | ID: mdl-11800913

ABSTRACT

The localization of excitons on quantum-dot-like compositional fluctuations has been observed in temperature-dependent near-field magnetophotoluminescence spectra of InGaAsN. Localization is driven by the giant bowing parameter of these alloys and manifests itself by the appearance of ultranarrow lines (half-width <1 meV) at temperatures below 70 K. We show how near-field optical scanning microscopy can be used for the estimation of the size, density, and nitrogen excess of individual compositional fluctuations (clusters), thus revealing random versus phase-separation effects in the distribution of nitrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...