Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16223, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758748

ABSTRACT

The Kuroshio Extension (KE) flows eastward at the northern boundary of the North Pacific subtropical gyre. By transporting large amounts of seawater with heat, the KE contributes significantly to the formation of sea surface temperature (SST) fields. Recently, poleward shifts of major ocean gyres in the world ocean, including the North Pacific subtropical gyre, have been highlighted based on basin-scale changes in SST and sea surface height (SSH) distributions. However, a detailed investigation of the long-term meridional KE movement has not been presented. Investigation of KE path changes helps provide insights into long-term changes in the physical fields in the western North Pacific. In this study, we identified the KE path from satellite-derived SSH and surface current velocity data using a front identification method and showed that the KE migrated northward by approximately 210 km during 1993-2021. We further explored the cause of the northward KE shift based on atmospheric reanalysis data and numerical experiments using a high-resolution ocean general circulation model. It was revealed that the northward KE shift is mostly caused by the trend of wind stress curl in the North Pacific during 1993-2021.

2.
J Environ Radioact ; 180: 36-58, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29024817

ABSTRACT

To understand the concentration and amount of Fukushima-derived Cs-137 in the ocean, this study simulated the oceanic dispersion of Cs-137 by atmospheric and oceanic dispersion simulations. The oceanic dispersion simulations were carried out with an oceanic dispersion model and multiple oceanic general circulation models. The Cs-137 concentrations were sensitive to ocean currents in the coastal, offshore, and open oceans. The mean Cs-137 concentrations of the multiple models relatively well agreed with the observed concentrations in the coastal and offshore oceans during the first few months after the Fukushima disaster, and in the open ocean during the first year after the disaster. The Cs-137 amounts were quantified in the coastal, offshore, and open oceans during the first year after the disaster. It was suggested that Cs-137 actively dispersed from the coastal and offshore oceans to the open ocean, and from the surface layer to the deeper layers in the North Pacific.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive/analysis , Oceans and Seas , Water Movements
3.
PLoS One ; 10(11): e0142885, 2015.
Article in English | MEDLINE | ID: mdl-26571118

ABSTRACT

We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.


Subject(s)
Decapodiformes/physiology , Ecosystem , Water , Animals , Chlorophyll/analysis , Chlorophyll A , Geography , Models, Theoretical , Pacific Ocean , Seasons , Spatio-Temporal Analysis , Uncertainty
4.
J Environ Radioact ; 136: 64-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24907706

ABSTRACT

Numerical simulations on oceanic (134)Cs and (137)Cs dispersions were intensively conducted in order to assess an effect of the radioactive cesium on the North Pacific environment with a focus on the long-term variation of the radioactive cesium concentration after the Fukushima disaster that occurred in March 2011. The amounts of (134)Cs and (137)Cs released into the ocean were estimated using oceanic monitoring data, whereas the atmospheric deposition was calculated through atmospheric dispersion simulations. The highly accurate ocean current reanalyzed through a three-dimensional variational data assimilation enabled us to clarify the time series of the (134)Cs and (137)Cs concentrations in the North Pacific. It was suggested that the main radioactive cesium cloud due to the direct oceanic release reached the central part of the North Pacific, crossing 170°W one year after the Fukushima disaster. The radioactive cesium was efficiently diluted by meso-scale eddies in the Kuroshio Extension region and its concentration in the surface, intermediate, and deep layers had already been reduced to the pre-Fukushima background value in the wide area within the North Pacific 2.5 years after the Fukushima disaster.


Subject(s)
Cesium/analysis , Fukushima Nuclear Accident , Radiation Monitoring/methods , Radioactive Fallout/analysis , Water Pollutants, Radioactive/analysis , Air Movements , Cesium Radioisotopes/analysis , Models, Theoretical , Pacific Ocean , Radioactive Hazard Release , Time Factors , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...