Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(20): 14357-14367, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37792638

ABSTRACT

High-mannose-type glycans play essential biological roles, e.g., immune response and glycoprotein quality control, and preparing a series of oligomannosyl branches of high-mannose-type glycans is critical for biological studies. However, obtaining sufficient amounts of the various oligomannosyl branches is challenging. In this study, we demonstrated a partial glycosylation strategy for the single-step synthesis of various biologically relevant oligomannosyl-branched structures. First, Manα1-6(Manα1-3)Man-type oligomannosyl branch was synthesized via double glycosylation from a 3,6-di-OH mannosyl acceptor and fluorinated mannosyl donor with perfect α-selectivity. Subsequent partial glycosylation by reducing the equivalent of the mannosyl donor enabled to obtain biologically relevant Manα1-2Manα1-6(Manα1-2Manα1-3)Man, Manα1-6(Manα1-2Manα1-3)Man, Manα1-2Manα1-6(Manα1-3)Man, and Manα1-6(Manα1-3)Man in one-pot. Each oligomannosyl branch could be easily purified by liquid chromatography. The resulting structural isomers were identified by 2D-HMBC NMR. A systematic lectin affinity assay using the prepared oligomannosyl branches showed different specificities for the Galanthus nivalis lectin between structural isomers of the oligomannosyl branches with the same number of mannose residues..


Subject(s)
Lectins , Mannose , Humans , Glycosylation , Mannose/chemistry , Polysaccharides/chemistry , Glycoproteins/chemistry
2.
Carbohydr Res ; 502: 108273, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33713911

ABSTRACT

N-glycans are attached to newly synthesised polypeptides and are involved in the folding, secretion, and degradation of N-linked glycoproteins. In particular, the calnexin/calreticulin cycle, which is the central mechanism of the entry and release of N-linked glycoproteins depending on the folding sates, has been well studied. In addition to biological studies on the calnexin/calreticulin cycle, several studies have revealed complementary roles of in vitro chemistry-based research in the structure-based understanding of the cycle. In this mini-review, we summarise chemistry-based results and highlight their importance for further understanding of the cycle.


Subject(s)
Calnexin/metabolism , Calreticulin/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism , Calnexin/chemistry , Calreticulin/chemistry , Carbohydrate Conformation , Glycoproteins/chemistry , Polysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...