Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Lipid Res ; 60(1): 186-199, 2019 01.
Article in English | MEDLINE | ID: mdl-30413653

ABSTRACT

Lipoprotein (a) [Lp(a)] concentrations are among the strongest genetic risk factors for cardiovascular disease and present pronounced interethnic and interindividual differences. Approximately 90% of Lp(a) variance is controlled by the LPA gene, which contains a 5.6-kb-large copy number variation [kringle IV type 2 (KIV-2) repeat] that generates >40 protein isoforms. Variants within the KIV-2 region are not called in common sequencing projects, leaving up to 70% of the LPA coding region currently unaddressed. To completely assess the variability in LPA, we developed a sequencing strategy for this region and report here the first map of genetic variation in the KIV-2 region, a comprehensively evaluated ultradeep sequencing protocol, and an easy-to-use variant analysis pipeline. We sequenced 123 Central-European individuals and reanalyzed public data of 2,504 individuals from 26 populations. We found 14 different loss-of-function and splice-site mutations, as well as >100, partially even common, missense variants. Some coding variants were frequent in one population but absent in others. This provides novel candidates to explain the large ethnic and individual differences in Lp(a) concentrations. Importantly, our approach and pipeline are also applicable to other similar copy number variable regions, allowing access to regions that are not captured by common genome sequencing.


Subject(s)
DNA Copy Number Variations , Genomics , Kringles/genetics , Lipoprotein(a)/chemistry , Lipoprotein(a)/genetics , Polymorphism, Single Nucleotide , Humans , Mutation
2.
Am J Primatol ; 79(9)2017 09.
Article in English | MEDLINE | ID: mdl-28671714

ABSTRACT

Elevated Lipoprotein(a) (Lp(a)) plasma concentrations are a risk factor for cardiovascular disease in humans, largely controlled by the LPA gene encoding apolipoprotein(a) (apo(a)). Lp(a) is composed of low-density lipoprotein (LDL) and apo(a) and restricted to Catarrhini. A variable number of kringle IV (KIV) domains in LPA lead to a size polymorphism of apo(a) that is inversely correlated with Lp(a) concentrations. Smaller apo(a) isoforms and higher Lp(a) levels in central chimpanzees (Pan troglodytes troglodytes [PTT]) compared to humans from Europe had been reported. We studied apo(a) isoforms and Lp(a) concentrations in 75 western (Pan troglodytes verus [PTV]) and 112 central chimpanzees, and 12 bonobos (Pan paniscus [PPA]), all wild born and living in sanctuaries in Sierra Leone, Republic of the Congo, and DR Congo, respectively, and 116 humans from Gabon. Lp(a) levels were severalfold higher in western than in central chimpanzees (181.0 ± 6.7 mg/dl vs. 56.5 ± 4.3 mg/dl), whereas bonobos showed intermediate levels (134.8 ± 33.4 mg/dl). Apo(a) isoform sizes differed significantly between subspecies (means 20.9 ± 2.2, 22.9 ± 4.4, and 23.8 ± 3.8 KIV repeats in PTV, PTT, and PPA, respectively). However, far higher isoform-associated Lp(a) concentrations for all isoform sizes in western chimpanzees offered the main explanation for the higher overall Lp(a) levels in this subspecies. Human Lp(a) concentrations (mean 47.9 ± 2.8 mg/dl) were similar to those in central chimpanzees despite larger isoforms (mean 27.1 ± 4.9 KIV). Lp(a) and LDL, apoB-100, and total cholesterol levels only correlated in PTV. This remarkable differentiation between chimpanzees from different African habitats and the trait's similarity in humans and chimpanzees from Central Africa poses the question of a possible impact of an environmental factor that has shaped the genetic architecture of LPA. Overall, studies on the cholesterol-containing particles of Lp(a) and LDL in chimpanzees should consider differentiation between subspecies.


Subject(s)
Apoprotein(a)/genetics , Lipoprotein(a)/genetics , Pan troglodytes/genetics , Africa, Central , Animals , Congo , Gabon , Humans , Sierra Leone
3.
Eur Heart J ; 38(23): 1823-1831, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28444229

ABSTRACT

AIMS: Lp(a) concentrations represent a major cardiovascular risk factor and are almost entirely controlled by one single locus (LPA). However, many genetic factors in LPA governing the enormous variance of Lp(a) levels are still unknown. Since up to 70% of the LPA coding sequence are located in a difficult to access hypervariable copy number variation named KIV-2, we hypothesized that it may contain novel functional variants with pronounced effects on Lp(a) concentrations. We performed a large scale mutation analysis in the KIV-2 using an extreme phenotype approach. METHODS AND RESULTS: We compiled an discovery set of 123 samples showing discordance between LPA isoform phenotype and Lp(a) concentrations and controls. Using ultra-deep sequencing, we identified a splice site variant (G4925A) in preferential association with the smaller LPA isoforms. Follow-up in a European general population (n = 2892) revealed an exceptionally high carrier frequency of 22.1% in the general population. The variant explains 20.6% of the Lp(a) variance in carriers of low molecular weight (LMW) apo(a) isoforms (P = 5.75e-38) and reduces Lp(a) concentrations by 31.3 mg/dL. Accordingly the odds ratio for cardiovascular disease was reduced from 1.39 [95% confidence interval (CI): 1.17-1.66, P = 1.89e-04] for wildtype LMW individuals to 1.19 [95%CI: 0.92; 1.56, P = 0.19] in LMW individuals who were additionally positive for G4925A. Functional studies point towards a reduction of splicing efficiency by this novel variant. CONCLUSION: A highly frequent but until now undetected variant in the LPA KIV-2 region is strongly associated with reduced Lp(a) concentrations and reduced cardiovascular risk in LMW individuals.


Subject(s)
Cardiovascular Diseases/genetics , Kringles/genetics , Lipoprotein(a)/genetics , Adult , Aged , DNA Copy Number Variations/genetics , Female , Genotype , Humans , Linkage Disequilibrium/genetics , Lipoprotein(a)/metabolism , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Risk Factors
4.
J Lipid Res ; 57(8): 1339-59, 2016 08.
Article in English | MEDLINE | ID: mdl-27074913

ABSTRACT

Lipoprotein (a) [Lp(a)] has attracted the interest of researchers and physicians due to its intriguing properties, including an intragenic multiallelic copy number variation in the LPA gene and the strong association with coronary heart disease (CHD). This review summarizes present knowledge of the structure, function, and genetics of Lp(a) with emphasis on the molecular and population genetics of the Lp(a)/LPA trait, as well as aspects of genetic epidemiology. It highlights the role of genetics in establishing Lp(a) as a risk factor for CHD, but also discusses uncertainties, controversies, and lack of knowledge on several aspects of the genetic Lp(a) trait, not least its function.


Subject(s)
Cardiovascular Diseases/genetics , Lipoprotein(a)/chemistry , Lipoprotein(a)/physiology , Animals , Gene Frequency , Genetic Predisposition to Disease , Humans , Polymorphism, Genetic , Protein Domains
5.
Atherosclerosis ; 242(2): 521-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26302166

ABSTRACT

OBJECTIVE: The variant allele of rs3798220 in the apolipoprotein(a) gene (LPA) is used to assess the risk for coronary artery disease (CAD) in Europeans, where it is associated with short alleles of the Kringle IV-2 (KIV-2) copy number variation (CNV) and high lipoprotein(a) (Lp(a)) concentrations. No association of rs3798220 with CAD was detected in a GWAS of East Asians. Our study investigated the association of rs3798220 with Lp(a) concentrations and KIV-2 CNV size in non-European populations to explain the missing association of the variant with CAD in Asians. METHODS: We screened three populations from Africa and seven from Asia by TaqMan Assay for rs3798220 and determined KIV-2 CNV sizes of LPA alleles by pulsed-field gel electrophoresis (PFGE). Additionally, CAD cases from India were analysed. To investigate the phylogenetic origin of rs3798220, 40 LPA alleles from Chinese individuals were separated by PFGE and haplotyped for further SNPs. RESULTS: The variant was not found in Africans. Allele frequencies in East and Southeast Asians ranged from 2.9% to 11.6%, and were very low (0.15%) in CAD cases and controls from India. The variant was neither associated with short KIV-2 CNV alleles nor elevated Lp(a) concentrations in Asians. CONCLUSION: Our study shows that rs3798220 is no marker for short KIV-2 CNV alleles and high Lp(a) in East and Southeast Asians, although the haplotype background is shared with Europeans. It appears unlikely that this SNP confers atherogenic potential on its own. Furthermore, this SNP does not explain Lp(a) attributed risk for CAD in Asian Indians.


Subject(s)
Apolipoproteins A/genetics , DNA Copy Number Variations , Polymorphism, Single Nucleotide , Africa , Alleles , Asia , Asian People , China , Coronary Artery Disease/ethnology , Coronary Artery Disease/genetics , Electrophoresis, Gel, Pulsed-Field , Gene Frequency , Genetic Markers , Genetic Variation , Genome-Wide Association Study , Genotype , Haplotypes , Humans , India , Phylogeny , Protein Isoforms/genetics
6.
PLoS One ; 10(3): e0121582, 2015.
Article in English | MEDLINE | ID: mdl-25822457

ABSTRACT

Amazingly little sequence variation is reported for the kringle IV 2 copy number variation (KIV 2 CNV) in the human LPA gene. Apart from whole genome sequencing projects, this region has only been analyzed in some detail in samples of European populations. We have performed a systematic resequencing study of the exonic and flanking intron regions within the KIV 2 CNV in 90 alleles from Asian, European, and four different African populations. Alleles have been separated according to their CNV length by pulsed field gel electrophoresis prior to unbiased specific PCR amplification of the target regions. These amplicons covered all KIV 2 copies of an individual allele simultaneously. In addition, cloned amplicons from genomic DNA of an African individual were sequenced. Our data suggest that sequence variation in this genomic region may be higher than previously appreciated. Detection probability of variants appeared to depend on the KIV 2 copy number of the analyzed DNA and on the proportion of copies carrying the variant. Asians had a high frequency of so-called KIV 2 type B and type C (together 70% of alleles), which differ by three or two synonymous substitutions respectively from the reference type A. This is most likely explained by the strong bottleneck suggested to have occurred when modern humans migrated to East Asia. A higher frequency of variable sites was detected in the Africans. In particular, two previously unreported splice site variants were found. One was associated with non-detectable Lp(a). The other was observed at high population frequencies (10% to 40%). Like the KIV 2 type B and C variants, this latter variant was also found in a high proportion of KIV 2 repeats in the affected alleles and in alleles differing in copy numbers. Our findings may have implications for the interpretation of SNP analyses in other repetitive loci of the human genome.


Subject(s)
DNA Copy Number Variations , Genetic Variation , Lipoprotein(a)/genetics , Asian People/genetics , Base Sequence , Black People/genetics , Cloning, Molecular , Ethnicity/genetics , Exons , Female , Gene Frequency , Humans , Introns , Kringles/genetics , Male , White People/genetics
7.
PLoS One ; 8(11): e80710, 2013.
Article in English | MEDLINE | ID: mdl-24282552

ABSTRACT

The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ~500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.


Subject(s)
Chromosomes, Human, X , Evolution, Molecular , Genetic Linkage , Genetic Variation , Genetics, Population , Africa South of the Sahara , Haplotypes , Humans , Polymerase Chain Reaction , Polymorphism, Genetic
8.
J Pediatr ; 163(4): 1174-8.e3, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23876976

ABSTRACT

OBJECTIVE: To study genotype-phenotype correlation of ring chromosome 18 [r(18)] in 9 patients with 46,XN karyotype. STUDY DESIGN: In 9 patients with a de novo 46,XN,r(18) karyotype (7 females, 2 males), we performed high-resolution single-nucleotide polymorphism array analysis (Illumina Human Omni1-QuadV1 array in 6 patients, Affymetrix 6.0 array in 3 patients), investigation of parental origin, and genotype-phenotype correlation. RESULTS: No breakpoint was recurrent. Single metaphases with loss of the ring, double rings, or secondarily rearranged rings were found in some cases, but true mosaicism was present in none of these cases. In 3 patients, additional duplications in 18p (of 1.4 Mb, 2 Mb, and 5.8 Mb) were detected. In 1 patient, an additional deletion of 472 kb in Xp22.33, including the SHOX gene, was found. Parental origin of r(18) was maternal in 2 patients and paternal in 4 patients, and formation was most likely meiotic. Karyotype was normal in all investigated parents (n = 15). At birth, mean maternal age was 30 years (n = 9) and mean paternal age was 34.4 years (n = 9). CONCLUSION: Genotype-phenotype correlation revealed extensive clinical variability but no characteristic r(18) phenotype. Severity of clinical signs were generally correlated with the size of the deletion. Patients with large deletions in 18p and small deletions in 18q exhibited mainly symptoms related to 18p-, whereas those with large deletions in 18q and small deletions in 18p had symptoms of 18q-.


Subject(s)
Chromosome Deletion , Polymorphism, Single Nucleotide , Adolescent , Adult , Body Size , Child , Child, Preschool , Chromosomes, Human, Pair 18/ultrastructure , Female , Genetic Association Studies , Head/physiology , Humans , Infant , Infant, Newborn , Karyotyping , Male , Maternal Age , Microsatellite Repeats/genetics , Middle Aged , Oligonucleotide Array Sequence Analysis , Ring Chromosomes , Young Adult
9.
Eur J Med Genet ; 56(7): 383-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23608969

ABSTRACT

De novo combined duplications/inversions are very rare chromosomal rearrangements. For chromosome 7 just some dozen cases of duplications of various parts of the long arm have been published. We report on a 12-year-old boy with muscular hypotonia, global developmental delay, short stature, and various facial dysmorphism including frontal bossing, temporal narrowing, slightly down-slanting palpebral fissures, a broad nasal root, a long philtrum, a thin and tented upper lip, a drooping lower lip, micrognathia, prominent ears, a short neck, and a low posterior hairline. Karyotype analysis and molecular investigations revealed a complex de novo chromosomal rearrangement on 7q. FISH analysis with locus specific YACs and BACs and SNP array with the Illumina(®) HumanOmni1-Quad v1.0 BeadChip disclosed a direct duplication in the long arm of chromosome 7 (q22.1→q32.2) and an inversion located at the breakpoint between the two copies of the duplication (q31.31→q31.33). In addition, breakpoint characterization at the molecular level revealed a 386 bp insertion carrying two Alu elements of chromosome 19p13.2 between the two copies of the duplication. By a comparison of the SNP haplotypes of the derivative chromosome of the patient and both parents a two-step formation during spermatogenesis was suggested as the most likely mechanism of formation.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 7/genetics , Developmental Disabilities/genetics , Abnormalities, Multiple/diagnosis , Alu Elements , Child , Chromosome Breakpoints , Developmental Disabilities/diagnosis , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide
10.
Eur J Hum Genet ; 21(10): 1177-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23422942

ABSTRACT

Most balanced chromosomal aberrations are not associated with a clinical phenotype, however, in some patients they may disrupt gene structure. With the development of various next-generation sequencing techniques, fast and specific analyses of the breakpoint regions of chromosomal rearrangements are possible. Here, we report on a 19-year-old woman with a de novo balanced translocation t(2;8)(p13.2;q22.1) and a severe clinical phenotype including intellectual disability, epilepsy, behavioral features resembling autism, and minor dysmorphic features. By next-generation sequencing, we defined the breakpoints and found disruption of the exocyst complex component 6B (EXOC6B) gene in intron 1 on chromosome 2p13.2 involving two Alu elements with a homology of 81%. No gene was found at the respective breakpoint on chromosome 8. Expression analysis of the EXOC6B in blood lymphocytes and buccal smear revealed reduced expression in the patient in comparison with the control. Our findings in combination with one recently published case and one other patient listed in DECIPHER v5.1 indicate EXOC6B as a gene relevant for intellectual development and electrophysiological stability.


Subject(s)
Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , GTP-Binding Proteins/genetics , Translocation, Genetic , Abnormalities, Multiple/metabolism , Chromosome Breakpoints , Chromosomes, Human, Pair 2/genetics , Chromosomes, Human, Pair 8/genetics , Developmental Disabilities/metabolism , Epilepsy/metabolism , Female , GTP-Binding Proteins/metabolism , Humans , Lymphocytes/metabolism , Mouth Mucosa/metabolism , Syndrome , Young Adult
11.
Am J Med Genet A ; 158A(9): 2239-44, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22821890

ABSTRACT

Exact breakpoint determination by DNA-array has dramatically improved the analysis of genotype-phenotype correlations in chromosome aberrations. It allows a more exact definition of the most relevant genes and particularly their isolated or combined impact on the phenotype in an unbalanced state. Here, we report on a 21-year-old female with severe growth retardation, severe intellectual disability, hypoplasia of the corpus callosum, unilateral sacral hypoplasia, tethered cord, various minor facial dysmorphisms, and a telomeric deletion of about 4.4 Mb in 7q36.2->qter combined with a telomeric duplication of about 8 Mb in 17pter->p13.1. Fine mapping was achieved with the Illumina® Infinium HumanOmni1-Quad v1.0 BeadChip. Most of the major clinical features correspond to the well-known effects of haploinsufficiency of the MNX1 and SHH genes. In addition, review of the literature suggests an association of the 17p duplication with specific facial dysmorphic features and skeletal anomalies, but also an aggravating effect of the duplication-deletion for severe growth retardation as well as sacral and corpus callosum hypoplasia by one or more genes located on the proximal half of the segmental 17p duplication could be elaborated by comparison with other patients from the literature carrying either the deletion or the duplication found in our patient.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosome Duplication , Adult , Female , Humans , Karyotyping
12.
Am J Hum Genet ; 89(6): 713-30, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22152675

ABSTRACT

Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.


Subject(s)
Cerebellar Diseases/genetics , Cilia/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Mutation , Abnormalities, Multiple , Adult , Animals , Bardet-Biedl Syndrome/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/ultrastructure , Case-Control Studies , Cell Line , Cerebellum/abnormalities , Child , Child, Preschool , Chromosome Mapping , Cilia/metabolism , Female , Gene Expression , Gene Knockdown Techniques , Gene Knockout Techniques , Genetic Association Studies , Haplotypes , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/metabolism , Mice , Microscopy, Electron, Transmission , Multiprotein Complexes/metabolism , Polymorphism, Single Nucleotide , Retina/abnormalities , Sequence Analysis, DNA , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/embryology , Zebrafish/genetics
13.
PLoS Genet ; 7(4): e1001375, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533023

ABSTRACT

Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans.


Subject(s)
Climate , Genetics, Population , Genome, Human , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Selection, Genetic , Acclimatization , Gene Frequency , Humans , Temperature , Ultraviolet Rays
14.
Am J Med Genet A ; 152A(11): 2762-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20954245

ABSTRACT

Constitutional insertional translocations are rare findings in clinical cytogenetics. Here, we report on the unbalanced segregation of a balanced paternal insertional translocation ins(7;6)(p15;q16.1q21) to three children. Investigations by conventional karyotyping, FISH with locus-specific probes, microsatellite marker analysis, and SNP-array based copy number analysis revealed a direct orientation of the inserted segment, a size of 11.3 Mb, and breakpoints between rs4370337 and rs12660854 and rs12110990 and rs4946730 on 6q16.1 and 6q21, respectively, as well as within BAC clone RP11-182J2 on 7p15. A 17-year-old daughter inherited the der(6) chromosome and was affected by severe mental retardation, obesity, and minor anomalies. Two further children inherited the der(7) chromosome. A daughter shows an almost unremarkable phenotype and only minor features in neuropsychological testing at 19 years of age. Her 14-year-old half-brother demonstrates a mild delay in cognitive development most likely jointly caused by the chromosomal rearrangement and asphyxia during delivery. The patient with the deletion confirms the previously reported phenotype of severe mental retardation and obesity in patients with del(6)(q16.2), while both patients with partial trisomy for the same segment of chromosome 6 are further examples for a generally less severe phenotype associated with duplications than with deletions, and even for the recent insight that chromosomal aneusomies of several megabases may go without major clinical consequences.


Subject(s)
Chromosome Duplication/genetics , Chromosomes, Human, Pair 7/genetics , Mutagenesis, Insertional/genetics , Adolescent , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics , Female , Humans , Infant , Infant, Newborn , Male , Neuropsychological Tests , Pedigree , Phenotype , Pregnancy , Trisomy/genetics , Young Adult
15.
Proc Natl Acad Sci U S A ; 107 Suppl 2: 8924-30, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20445095

ABSTRACT

Human populations use a variety of subsistence strategies to exploit an exceptionally broad range of ecoregions and dietary components. These aspects of human environments have changed dramatically during human evolution, giving rise to new selective pressures. To understand the genetic basis of human adaptations, we combine population genetics data with ecological information to detect variants that increased in frequency in response to new selective pressures. Our approach detects SNPs that show concordant differences in allele frequencies across populations with respect to specific aspects of the environment. Genic and especially nonsynonymous SNPs are overrepresented among those most strongly correlated with environmental variables. This provides genome-wide evidence for selection due to changes in ecoregion, diet, and subsistence. We find particularly strong signals associated with polar ecoregions, with foraging, and with a diet rich in roots and tubers. Interestingly, several of the strongest signals overlap with those implicated in energy metabolism phenotypes from genome-wide association studies, including SNPs influencing glucose levels and susceptibility to type 2 diabetes. Furthermore, several pathways, including those of starch and sucrose metabolism, are enriched for strong signals of adaptations to a diet rich in roots and tubers, whereas signals associated with polar ecoregions are overrepresented in genes associated with energy metabolism pathways.


Subject(s)
Adaptation, Physiological , Diet , Gene Frequency , Animals , Biological Evolution , Ecology , Genetics, Population , Haplotypes , Homozygote , Humans , Models, Biological , Models, Genetic , Selection, Genetic
17.
Fertil Steril ; 94(1): 350.e12-5, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20117774

ABSTRACT

OBJECTIVE: To describe the parental origin and the mechanism of formation of a 46,X,der(X)(pter-->q21.1::p11.4-->pter)[23]/45,X[8] karyotype in a patient with mild Turner syndrome. DESIGN: Case report. SETTING: A university hospital. PATIENT(S): A 23-year-old woman with normal height, gonadal dysgenesis, and mild Turner stigmata. INTERVENTION(S): Genotype-phenotype correlation, array-based copy number analysis, fluorescence in situ hybridization with locus-specific probes, and microsatellite marker-mediated haplotype analysis subsequent to whole genome amplification of microdissected chromosomes. MAIN OUTCOME MEASURES: Genotype-phenotype correlation, mechanism of formation, and parental origin. RESULT(S): Formation in paternal meiosis by refolding in itself and unequal recombination between Xp and Xq were found as the most likely mechanism of formation. CONCLUSION(S): Formation of der(X) chromosomes in females can be more complex than previously thought. The nearly normal height of this patient could be explained by a combination of trisomy of the Xp-located SHOX gene and mosaicism with a 45,X cell line.


Subject(s)
Chromosomes, Human, X/genetics , Karyotyping/methods , Turner Syndrome/diagnosis , Turner Syndrome/genetics , Adult , Female , Humans , Male , Parents , Pregnancy , Young Adult
18.
Hum Mutat ; 31(5): 544-51, 2010 May.
Article in English | MEDLINE | ID: mdl-20186687

ABSTRACT

Autosomal recessive microvillus inclusion disease (MVID) is characterized by an intractable diarrhea starting within the first few weeks of life. The hallmarks of MVID are a lack of microvilli on the surface of villous enterocytes, occurrence of intracellular vacuoles lined by microvilli (microvillus inclusions), and the cytoplasmic accumulation of periodic acid-Schiff (PAS)-positive vesicles in enterocytes. Recently, we identified mutations in MYO5B, encoding the unconventional type Vb myosin motor protein, in a first cohort of nine MVID patients. In this study, we identified 15 novel nonsense and missense mutations in MYO5B in 11 unrelated MVID patients. Fluorescence microscopy, Western blotting, and electron microscopy were applied to analyze the effects of MYO5B siRNA knock-down in polarized, brush border possessing CaCo-2 cells. Loss of surface microvilli, increased formation of microvillus inclusions, and subapical enrichment of PAS-positive endomembrane compartments were induced in polarized, filter-grown CaCo-2 cells, following MYO5B knock-down. Our data indicate that MYO5B mutations are a major cause of microvillus inclusion disease and that MYO5B knock-down recapitulates most of the cellular phenotype in vitro, thus independently showing loss of MYO5B function as the cause of microvillus inclusion disease.


Subject(s)
Diarrhea, Infantile/genetics , Digestive System Abnormalities/genetics , Malabsorption Syndromes/genetics , Microvilli/pathology , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Adolescent , Blotting, Western , Caco-2 Cells , Child , Child, Preschool , Codon, Nonsense/genetics , DNA Mutational Analysis , Female , Humans , Infant , Male , Mutation, Missense/genetics , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , RNA Interference/physiology
19.
Nucleus ; 1(4): 354-66, 2010.
Article in English | MEDLINE | ID: mdl-21327084

ABSTRACT

The lamin B receptor (LBR) is an inner nuclear membrane protein with a structural function interacting with chromatin and lamins, and an enzymatic function as a sterol reductase. Heterozygous LBR mutations cause nuclear hyposegmentation in neutrophils (Pelger anomaly), while homozygous mutations cause prenatal death with skeletal defects and abnormal sterol metabolism (Greenberg dysplasia). It has remained unclear whether the lethality in Greenberg dysplasia is due to cholesterol defects or altered nuclear morphology.To answer this question we characterized two LBR missense mutations and showed that they cause Greenberg dysplasia. Both mutations affect residues that are evolutionary conserved among sterol reductases. In contrast to wildtype LBR, both mutations failed to rescue C14 sterol reductase deficient yeast, indicating an enzymatic defect. We found no Pelger anomaly in the carrier parent excluding marked effects on nuclear structure. We studied Lbr in mouse embryos and demonstrate expression in skin and the developing skeletal system consistent with sites of histological changes in Greenberg dysplasia. Unexpectedly we found in disease-relevant cell types not only nuclear but also cytoplasmatic LBR localization. The cytoplasmatic LBR staining co-localized with ER-markers and is thus consistent with the sites of endogeneous sterol synthesis. We conclude that LBR missense mutations can abolish sterol reductase activity, causing lethal Greenberg dysplasia but not Pelger anomaly. The findings separate the metabolic from the structural function and indicate that the sterol reductase activity is essential for human intrauterine development.


Subject(s)
Osteochondrodysplasias/genetics , Pelger-Huet Anomaly/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Cell Line, Tumor , Fibroblasts/metabolism , Genotype , HeLa Cells , Heterozygote , Homozygote , Humans , Mice , Mutation, Missense , Nuclear Envelope/metabolism , Osteochondrodysplasias/pathology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pelger-Huet Anomaly/pathology , Phenotype , Receptors, Cytoplasmic and Nuclear/analysis , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Lamin B Receptor
20.
Eur J Pediatr ; 169(3): 327-32, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19633868

ABSTRACT

Hereditary gingival fibromatosis (HGF) is a rare, clinically variable disorder characterized by slowly progressive fibrous overgrowth of the gingiva. Four gene loci have been mapped for autosomal dominant non-syndromic HGF (adHGF). The molecular basis of adHGF remains largely unknown, with only a single SOS1 gene mutation identified so far at the gingival fibromatosis 1 (GINGF1) locus in one family. We identified an adHGF family with ten affected individuals in whom onset of gingival fibromatosis concurred with the eruption of the primary teeth. In order to identify the molecular basis in this family, we tested for linkage of the disease to known adHGF loci. A maximal multipoint logarithm of the odds score of 3.91 was obtained with marker D2S390 (theta = 0) at the GINGF3 locus on chromosome 2p23.3-p22.3, and linkage to other known loci was excluded. Sequencing two candidate genes, ALK and C2orf18, and a single nucleotide polymorphisms array analysis did not reveal a mutation or copy number variation in a patient from the family. We refined the GINGF3 locus to a 6.56-cM, 8.27-Mb region containing 112 known and hypothetical genes, and our data and a search of the literature suggest that GINGF3 is a major adHGF locus.


Subject(s)
Fibromatosis, Gingival/genetics , Female , Fibromatosis, Gingival/pathology , Genetic Linkage , Genetic Loci , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...