Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 38(17): 3651-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15350416

ABSTRACT

The toxic effects of heavy metals, zinc and copper, in unary and binary solutions were studied using the Microtox acute toxicity test which relies upon the attenuation of light intensity emitted by Vibrio fischeri. The toxic effect Gamma (ratio of the light intensity lost at time t to the light intensity remaining at time t) of zinc could be related to its concentration [X] by a two-parameter equation Gamma=a(1-exp(-b[X])), where parameter a was a function of time and b equal to 0.88L/mg. The toxic effect of zinc asymptotically approached a maximum with respect of to concentration at all times. The toxic effect of copper was fundamentally different from that of zinc, and increased exponentially with concentration without any limiting maximum value. It could also be described by a two-parameter equation, however, the equation had the form Gamma=aexp(b[X]), where parameter a was a constant and b a function of time. The different functional dependencies (of the toxic effect on the metal concentration) of zinc and copper indicate that different toxicity/inhibition mechanisms were possibly responsible for the attenuation of light intensity for the two metals. The toxic effects of binary mixtures were substantially higher than those expected on the basis of additivity of individual metals. No simple correlations were obtained that could relate the toxic effect of binary mixture to those of individual metals. A better understanding of metal-microbe interactions is needed for achieving predictive capability for toxic effect of mixtures.


Subject(s)
Copper/toxicity , Models, Theoretical , Water Pollutants/toxicity , Zinc/toxicity , Aliivibrio fischeri/physiology , Biological Assay , Drug Interactions , Forecasting , Time Factors
2.
Biotechnol Bioeng ; 82(3): 306-12, 2003 May 05.
Article in English | MEDLINE | ID: mdl-12599257

ABSTRACT

The adverse effects of copper and zinc on an acetate-utilizing mixed cultures of sulfate-reducing bacteria (SRB) at concentrations below the toxic concentration (minimum metal concentration at which no sulfate reduction is observed) are reported in this paper. Mathematical models were developed to incorporate the toxic and inhibitory effects (defined as the reduction in bacterial population upon exposure to the metal and the decrease in the metabolic rate of sulfate reduction by the SRB, respectively) into the sulfate-reduction biokinetics. The characteristic toxicity and inhibition constants were obtained from the measurements of bacterial populations and dissolved metal concentrations in serum bottle studies conducted at 35 degrees C and pH 6.6. Both copper and zinc had toxic and inhibitory effects on SRB. The toxicity constants for copper and zinc were 10.6 and 2.9 mM(-1), respectively, indicating that exposure to copper resulted in a higher mortality of SRB than did exposure to zinc. The values of the inhibition constants were found to be 17.9 +/- 2.5 and 25.2 +/- 1.0 mM(-1) for copper and zinc, respectively. This implies that dissolved zinc was slightly more inhibitory to SRB than copper. The models presented in the paper can be used to predict the response of a sulfate-reduction bioreactor to heavy metals during acid mine drainage treatment.


Subject(s)
Copper/pharmacology , Models, Biological , Sulfates/metabolism , Sulfur-Reducing Bacteria/growth & development , Sulfur-Reducing Bacteria/metabolism , Zinc/pharmacology , Biodegradation, Environmental , Bioreactors/microbiology , Computer Simulation , Copper/pharmacokinetics , Industrial Waste/prevention & control , Oxidation-Reduction , Sewage/microbiology , Sulfur-Reducing Bacteria/drug effects , Zinc/pharmacokinetics
3.
Environ Toxicol ; 17(1): 40-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11847973

ABSTRACT

Acid mine drainage (AMD) containing high concentrations of sulfate and heavy metal ions can be treated by biological sulfate reduction. It has been reported that the effect of heavy metals on sulfate-reducing bacteria (SRB) can be stimulatory at lower concentrations and toxic/inhibitory at higher concentrations. The quantification of the toxic/inhibitory effect of dissolved heavy metals is critical for the design and operation of an effective AMD bioremediation process. Serum bottle and batch reactor studies on metal toxicity to SRB indicate that insoluble metal sulfides can inhibit the SRB activity as well. The mechanism of inhibition is postulated to be external to the bacterial cell. The experimental data indicate that the metal sulfides formed due to the reaction between the dissolved metal and biogenic sulfide act as barriers preventing the access of the reactants (sulfate, organic matter) to the necessary enzymes. Scanning electron micrographs of the SRB cultures exposed to copper and zinc provide supporting evidence for this hypothesis. The SRB cultures retained their ability to effect sulfate reduction indicating that the metal sulfides were not lethally toxic to the SRB. This phenomenon of metal sulfide inhibition of the SRB has to be taken into account while designing a sulfate-reducing bioreator, and subsequently an efficient biotreatment strategy for AMD. Any metal sulfide formed in the bioreactor needs to be removed immediately from the system to maintain the efficiency of the process of sulfate reduction.


Subject(s)
Metals, Heavy/adverse effects , Mining , Sulfur-Reducing Bacteria/physiology , Biodegradation, Environmental , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oxidation-Reduction , Population Dynamics , Solubility , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...