Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 307(5): 1381-94, 2001 Apr 13.
Article in English | MEDLINE | ID: mdl-11292349

ABSTRACT

Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria.


Subject(s)
Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Antibody Specificity/genetics , Binding Sites, Antibody/genetics , Binding Sites, Antibody/immunology , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/genetics , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Plasmodium falciparum/genetics , Protein Conformation , Surface Plasmon Resonance
2.
J Mol Biol ; 289(1): 113-22, 1999 May 28.
Article in English | MEDLINE | ID: mdl-10339410

ABSTRACT

The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion. This structure, which is the first protozoan EGF example to be determined, contrasts with the elongated structures seen for EGF-module pairs having shared Ca2+-ligation sites at their interface, as found, for example, in fibrillin-1. Recognition surfaces for antibodies that inhibit processing and invasion, and antibodies that block the binding of these inhibitory antibodies, have been mapped on the three-dimensional structure by considering specific MSP-1 mutants.


Subject(s)
Epidermal Growth Factor/chemistry , Merozoite Surface Protein 1/chemistry , Plasmodium falciparum , Amino Acid Sequence , Animals , Consensus Sequence , Disulfides/analysis , Humans , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Plasmodium vivax/chemistry , Protein Structure, Secondary , Sequence Alignment , Sequence Homology, Amino Acid , Software , Solutions
3.
Parassitologia ; 41(1-3): 409-14, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10697894

ABSTRACT

There is an urgent need for a vaccine against malaria and proteins on the surface of the merozoite are good targets for development as vaccine candidates because they are exposed to antibody. However, it is possible that the parasite has evolved mechanisms to evade a protective immune response to these proteins. Merozoite surface protein 1 (MSP-1) is a candidate for vaccine development and its C-terminal sequence is the target of protective antibody. MSP-1 is cleaved by proteases in two processing steps, the second step releases the bulk of the protein from the surface and goes to completion during successful red blood cell invasion. Antibodies binding to the C-terminus of Plasmodium falciparum MSP-1 can inhibit both the processing and erythrocyte invasion. Other antibodies that bind to either the C-terminal sequence or elsewhere in the molecule are 'blocking' antibodies, which on binding prevent the binding of the inhibitory antibodies. Blocking antibodies are a mechanism of immune evasion, which may be based on antigenic conservation rather than diversity. This mechanism has a number of implications for the study of protective immunity and the development of malaria vaccines, emphasising the need for appropriate functional assays and careful design of the antigen.


Subject(s)
Malaria Vaccines , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Animals , Antibodies, Protozoan/biosynthesis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...