Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e26398, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404786

ABSTRACT

Brain implantable wireless microsystems has potential to treat neurological diseases and maintain the quality of life. Highly efficient miniaturized antenna is the fundamental part of BID (brain implantable device) for reliable signaling of data through dissipative intracranial material. In this paper, a patch antenna with L-shaped defected ground is demonstrated. L-shaped radiator contributed to achieve the resonance at 2.45 GHz industrial scientific and medical (ISM) band. Antenna size is reduced to 10 × 10 × 0.25 mm3. The proposed L-shaped ground plane geometry is contributing in improving the radiation performance. |S11| value shifts from 15 dB to 30 dB after modifying the ground plane. Proposed structure attained the gain of -14 dBi when located between the Dura and CSF layers at the depth of 12 mm in human brain model. Full wave simulated antenna prototype is fabricated and measured for performance verification. Impedance bandwidth of 270 MHz and broadside radiation pattern (for transferring maximum electromagnetic energy away from tissue) are maintained by the proposed antenna. Brain tissue safety is ensured by specific absorption rate which is 0.709 W/kg and in compliance with the safety limits of 1.6 W/kg for 1-g averaged tissue. Proposed antenna structure is the promising candidate for medical implant technology.

2.
Sensors (Basel) ; 22(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684863

ABSTRACT

Those with disabilities who have lost their legs must use a prosthesis to walk. However, traditional prostheses have the disadvantage of being unable to move and support the human gait because there are no mechanisms or algorithms to control them. This makes it difficult for the wearer to walk. To overcome this problem, we developed an insole device with a wearable sensor for real-time gait phase detection based on the kNN (k-nearest neighbor) algorithm for prosthetic control. The kNN algorithm is used with the raw data obtained from the pressure sensors in the insole to predict seven walking phases, i.e., stand, heel strike, foot flat, midstance, heel off, toe-off, and swing. As a result, the predictive decision in each gait cycle to control the ankle movement of the transtibial prosthesis improves with each walk. The results in this study can provide 81.43% accuracy for gait phase detection, and can control the transtibial prosthetic effectively at the maximum walking speed of 6 km/h. Moreover, this insole device is small, lightweight and unaffected by the physical factors of the wearer.


Subject(s)
Artificial Limbs , Wearable Electronic Devices , Algorithms , Biomechanical Phenomena , Gait , Humans , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...