Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Artif. organs ; 44(8): 785-796, Aug. 2020. gráfico, ilustração, tabela
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1103514

ABSTRACT

Left ventricular assist devices (LVADs) have been used as a bridge to transplantation or as destination therapy to treat patients with heart failure (HF). The inability of control strategy to respond automatically to changes in hemodynamic conditions can impact the patients' quality of life. The developed control system/algorithm consists of a control system that harmoniously adjusts pump speed without additional sensors, considering the patient's clinical condition and his physical activity. The control system consists of three layers: (a) Actuator speed control; (b) LVAD flow control (FwC); and (c) Fuzzy control system (FzC), with the input variables: heart rate (HR), mean arterial pressure (MAP), minimum pump flow, level of physical activity (data from patient), and clinical condition (data from physician, INTERMACS profile). FzC output is the set point for the second LVAD control schemer (FwC) which in turn adjusts the speed. Pump flow, MAP, and HR are estimated from actuator drive parameters (speed and power). Evaluation of control was performed using a centrifugal blood pump in a hybrid cardiovascular simulator, where the left heart function is the mechanical model and right heart function is the computational model. The control system was able to maintain MAP and cardiac output in the physiological level, even under variation of EF. Apart from this, also the rotational pump speed is adjusted following the simulated clinical condition. No backflow from the aorta in the ventricle occurred through LVAD during tests. The control algorithm results were considered satisfactory for simulations, but it still should be confirmed during in vivo tests.


Subject(s)
Blood , In Vitro Techniques , Algorithms , Heart-Assist Devices
2.
Artif. organs ; 44(8): 771-772, Aug. 2020.
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1148149
4.
Artif Organs ; 44(8): 785-796, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31944337

ABSTRACT

Left ventricular assist devices (LVADs) have been used as a bridge to transplantation or as destination therapy to treat patients with heart failure (HF). The inability of control strategy to respond automatically to changes in hemodynamic conditions can impact the patients' quality of life. The developed control system/algorithm consists of a control system that harmoniously adjusts pump speed without additional sensors, considering the patient's clinical condition and his physical activity. The control system consists of three layers: (a) Actuator speed control; (b) LVAD flow control (FwC); and (c) Fuzzy control system (FzC), with the input variables: heart rate (HR), mean arterial pressure (MAP), minimum pump flow, level of physical activity (data from patient), and clinical condition (data from physician, INTERMACS profile). FzC output is the set point for the second LVAD control schemer (FwC) which in turn adjusts the speed. Pump flow, MAP, and HR are estimated from actuator drive parameters (speed and power). Evaluation of control was performed using a centrifugal blood pump in a hybrid cardiovascular simulator, where the left heart function is the mechanical model and right heart function is the computational model. The control system was able to maintain MAP and cardiac output in the physiological level, even under variation of EF. Apart from this, also the rotational pump speed is adjusted following the simulated clinical condition. No backflow from the aorta in the ventricle occurred through LVAD during tests. The control algorithm results were considered satisfactory for simulations, but it still should be confirmed during in vivo tests.


Subject(s)
Heart-Assist Devices , Hemodynamics/physiology , Arterial Pressure , Exercise/physiology , Fuzzy Logic , Heart Rate/physiology , Humans , Models, Biological , Prosthesis Design
5.
ASAIO J ; 57(5): 462-5, 2011.
Article in English | MEDLINE | ID: mdl-21841468

ABSTRACT

An implantable centrifugal blood pump has been developed with original features for a ventricle assist device (VAD). This pump is part of a multicenter and international study with objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations were performed followed by prototyping and in vitro tests. Also, previous blood tests for assessment of hemolysis showed mean normalized index of hemolysis (NIH) results of 0.0054 ± 2.46 × 10⁻³ mg/100 L (at 5 L/min and 100 mm Hg). To precede in vivo evaluation, measurements of magnetic coupling interference and enhancements of actuator control were necessary. Methodology was based on the study of two different work situations (1 and 2) studied with two different types of motors (A and B). Situation 1 is when the rotor of pump is closest to the motor and situation 2 its opposite. Torque and mechanical power were collected with a dynamometer (80 g/cm) and then plotted and compared for two situations and both motors. The results showed that motor A has better mechanical behavior and less influence of coupling. Results for situation 1 showed that it is more often under magnetic coupling influence than situation 2. The studies lead to the conclusion that motor A is the best option for in vivo studies as it has less influence of magnetic coupling in both situations.


Subject(s)
Heart-Assist Devices , Biomedical Engineering/methods , Centrifugation , Equipment Design , Hemolysis , Humans , Magnetics , Torque
6.
Artif Organs ; 35(5): 437-42, 2011 May.
Article in English | MEDLINE | ID: mdl-21595708

ABSTRACT

An implantable centrifugal blood pump has been developed with original features for a left ventricular assist device. This pump is part of a multicenter and international study with the objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations and wear evaluation in bearing system were performed followed by prototyping and in vitro tests. In addition, previous blood tests for assessment of normalized index of hemolysis show results of 0.0054±2.46 × 10⁻³ mg/100 L. An electromechanical actuator was tested in order to define the best motor topology and controller configuration. Three different topologies of brushless direct current motor (BLDCM) were analyzed. An electronic driver was tested in different situations, and the BLDCM had its mechanical properties tested in a dynamometer. Prior to evaluation of performance during in vivo animal studies, anatomical studies were necessary to achieve the best configuration and cannulation for left ventricular assistance. The results were considered satisfactory, and the next step is to test the performance of the device in vivo.


Subject(s)
Heart-Assist Devices , Hemodynamics , Prosthesis Implantation , Ventricular Function, Left , Animals , Biomechanical Phenomena , Brazil , Cattle , Male , Materials Testing , Prosthesis Design
7.
Artif Organs ; 35(5): 437-442, 2011. ilus, graf
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1060074

ABSTRACT

An implantable centrifugal blood pump hasbeen developed with original features for a left ventricularassist device. This pump is part of a multicenter and internationalstudy with the objective to offer simple, affordable,and reliable devices to developing countries. Previous computationalfluid dynamics investigations and wear evaluationin bearing system were performed followed byprototyping and in vitro tests. In addition, previous bloodtests for assessment of normalized index of hemolysis showresults of 0.0054 2.46 ¥ 10-3 mg/100 L. An electromechanicalactuator was tested in order to define the bestmotor topology and controller configuration. Three differenttopologies of brushless direct current motor (BLDCM)were analyzed.An electronic driver was tested in differentsituations, and the BLDCM had its mechanical propertiestested in a dynamometer. Prior to evaluation of performanceduring in vivo animal studies, anatomical studieswere necessary to achieve the best configuration and cannulationfor left ventricular assistance. The results wereconsidered satisfactory, and the next step is to test theperformance of the device in vivo.


Subject(s)
Heart-Assist Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...