Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 29(19-20): 541-556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37548556

ABSTRACT

Cartilage is considered to be immune privileged in general. Clinically, live cells are removed from subcutaneously transplanted allogeneic cartilage mainly for preservation and for infection control. However, because maintaining cartilage feature requires live chondrocyte, it would be beneficial to subcutaneously transplant cartilage with live chondrocyte even if it was allogeneic. We harvested femoral head from 3-week-old male C57BL/6 mice, subcutaneously transplanted to 6-week-old male mice, BALB/c, BALB/c nu/nu, or C57BL/6-Tg (enhanced green fluorescent protein [EGFP] under the control of the CMV-IE enhancer, chicken beta-actin promoter, rabbit beta-globin genomic DNA [CAG promoter]), as allogeneic, allogeneic immunodeficient control, or syngeneic transplantation. We also transplanted cartilaginous particles from human induced pluripotent stem cells derived from human leukocyte antigen homozygous donor to 6-week-old male mice either BALB/c and BALB/c nu/nu as xenogeneic or xenogeneic immunodeficient control. The transplantation periods were 1, 2, 3, 4, 8, 12, and 24 weeks. As the result, we did not observe exposure of the transplant or apparent macroscopic inflammatory in all samples. Histological analysis suggested that the femoral head showed focal ossification and thinning in syngeneic transplantation. In allogeneic transplantation, slight invasion of CD3 (+) T cell and the denaturation of the cartilage were observed, suggesting immune reaction against allogeneic cartilage. In xenogeneic transplantation, slight invasion of CD3 (+) cell and CD4 (+) cell and the structure of the perichondrium-like tissue got unclear, suggesting slight immune reaction against xenogeneic cartilage. Our findings suggest that we should carefully investigate for appropriate procedure to control immune reaction against allogeneic cartilage with live chondrocyte and to maintain its cartilage feature for long time.

2.
Tissue Eng Part A ; 27(9-10): 604-617, 2021 05.
Article in English | MEDLINE | ID: mdl-32883178

ABSTRACT

Microtia is a congenital malformation of the auricle. The conventional therapy for microtia is reconstruction of the auricle by using the patient's own costal cartilage. Because it is invasive to harvest costal cartilages, less invasive ways for auricular reconstruction need to be established. Recent reports have indicated a new method for the production of cartilaginous particles from human induced pluripotent stem cells. To adopt this method to create an auricular-shaped regenerative cartilage, a novel scaffold with the property of a three-dimensional shape memory was created. A scaffold with a three-dimensional shape of auricular frames composed of a helix and an antihelix, which was designed to mimic an auricular framework carved from autologous costal cartilage and transplanted in auricular reconstruction, was prepared, filled with cartilaginous particles, and subcutaneously transplanted in nude rats. The auricular-shaped regenerative cartilage maintained the given shape and cartilage features in vivo for 1 year. Our findings suggest a novel approach for auricular reconstruction.


Subject(s)
Congenital Microtia , Ear Auricle , Induced Pluripotent Stem Cells , Plastic Surgery Procedures , Congenital Microtia/surgery , Ear Auricle/surgery , Ear Cartilage , Ear, External/surgery , Humans
3.
Regen Ther ; 9: 58-70, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30525076

ABSTRACT

INTRODUCTION: Pluripotent stem cells have an advantage that they can proliferate without reduction of the quality, while they have risk of tumorigenesis. It is desirable that pluripotent stem cells can be utilized safely with minimal effort in cartilage regenerative medicine. To accomplish this, we examined the potential usefulness of induced pluripotent stem cells (iPS cells) after minimal treatment via cell isolation and hydrogel embedding for cartilage regeneration using a large animal model. METHODS: Porcine iPS-like cells were established from the CLAWN miniature pig. In vitro differentiation was examined for porcine iPS-like cells with minimal treatment. For the osteochondral replacement model, osteochondral defect was made in the quarters of the anteromedial sides of the proximal tibias in pigs. Porcine iPS-like cells and human iPS cells with minimal treatment were seeded on scaffold made of thermo-compression-bonded beta-TCP and poly-L-lactic acid and transplanted to the defect, and cartilage regeneration and tumorigenesis were evaluated. RESULTS: The in vitro analysis indicated that the minimal treatment was sufficient to weaken the pluripotency of the porcine iPS-like cells, while chondrogenic differentiation did not occur in vitro. When porcine iPS-like cells were transplanted into osteochondral replacement model after minimal treatment in vitro, cartilage regeneration was observed without tumor formation. Additionally, fluorescent in situ hybridization (FISH) indicated that the chondrocytes in the regenerative cartilage originated from transplanted porcine iPS-like cells. Transplantation of human iPS cells also showed the regeneration of cartilage in miniature pigs under immunosuppressive treatment. CONCLUSION: Minimally-treated iPS cells will be a useful cell source for cartilage regenerative medicine.

4.
Regen Ther ; 6: 15-20, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30271835

ABSTRACT

INTRODUCTION: Achondroplasia (ACH) is a congenital disease which causes dwarfism and many symptoms resulting from skeletal dysplasia. Because present therapeutic strategies are mainly surgical procedures as symptomatic treatments, development of a radical treatment is desired. Clarification of the ACH pathology is essential for creating a new remedy. However, there are many questions about the disease mechanisms that have not been answered. METHODS: As a single base substitution of the FGFR3 gene had been proved to be the ACH causing genome mutation, our group established disease specific iPS cells by introducing the causative mutation of achondroplasia into human iPS cells by CRISPR/Cas9 based genome editing. These cells were differentiated towards chondrocytes, then the gene and protein expressions were examined by real time RT-PCR and Western blotting, respectively. RESULTS: Based on the western blotting analysis, the FGFR3 protein and phosphorylated ERK were increased in the FGFR3 mutated iPS cells compared to the control cells, while the FGFR3 gene expression was suppressed in the FGFR3 mutated iPS cells. According to chondrogenic differentiation experiments, the IHH expression level was increased in the control cells as the differentiation progressed. On the other hand, up-regulation of the IHH gene expression was suppressed in the FGFR3 mutated iPS cells. CONCLUSIONS: These results suggested that chondrocyte maturation was impaired between the proliferative stage and prehypertrophic stage in the chondrocytes of ACH. The development of chemical compounds which affect the specific maturation stage of chondrocytes is expected to contribute to the ACH treatment, and FGFR3 genome-edited hiPSCs will be a valuable tool in such research studies.

5.
Regen Ther ; 7: 72-79, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30271854

ABSTRACT

INTRODUCTION: We have developed an implant-type tissue-engineered cartilage using a poly-l-lactide scaffold. In a clinical study, it was inserted into subcutaneous areas of nasal dorsum in three patients, to correct cleft lip-nose deformity. The aim of this study was to helping evaluation on the efficacy of the regenerative cartilage. METHODS: 3D data of nasal shapes were compared between before and after surgery in computed tomography (CT) images. Morphological and qualitative changes of transplants in the body were also evaluated on MRI, for one year. RESULTS: The 3D data from CT images showed effective augmentation (>2 mm) of nasal dorsum in almost whole length, observed on the medial line of faces. It was maintained by 1 year post-surgery in all patients, while affected curves of nasal dorsum was not detected throughout the observation period. In magnetic resonance imaging (MRI), the images of transplanted cartilage had been observed until 1 year post-surgery. Those images were seemingly not straight when viewed from the longitudinal plain, and may have shown gentle adaptation to the surrounding nasal bones and alar cartilage tissues. CONCLUSION: Those findings suggested the potential efficacy of this cartilage on improvement of cleft lip-nose deformity. A clinical trial is now being performed for industrialization.

6.
Biomed Res ; 34(6): 281-8, 2013.
Article in English | MEDLINE | ID: mdl-24389404

ABSTRACT

The establishment of cartilage regenerative medicine has been an important issue in the clinical field, because cartilage has the poor ability of self-repair. Currently, tissue engineering using autologous chondrocytes has risen, but we should investigate more appropriate cell sources that can be obtained without any quantitative limitation. In this study, we focused on induced pluripotent stem (iPS) cells, in which the ethical hurdle does not seem higher than that of embryonic stem cells. Mouse iPS cells were transplanted into the mouse joint defect model of the knee. Strains of the transplants and hosts were arranged to be either closest (homology 75% in genetic background) or identical (100%). For transplantation, we embedded the iPS cells within the collagen hydrogel in order to obtain the effective administration of the cells into defects, which induced the differentiation of the iPS cells. At 8 weeks of transplantation, although the iPS cells with a 75% homology to the host in the genetic background tended to form teratoma, those of 100% showed a joint regeneration. GFP immunohistochemistry proved that the transplanted iPS cells were responsible for the bone and cartilage repair. Taking these results together, the iPS cells are regarded as a promising cell source for the cartilage tissue engineering.


Subject(s)
Bone Regeneration/physiology , Cartilage/pathology , Induced Pluripotent Stem Cells/transplantation , Knee Injuries/therapy , Knee Joint/pathology , Wound Healing/physiology , Animals , Biomarkers/metabolism , Cell Differentiation , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen/chemistry , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histocompatibility Testing , Hydrogels , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Knee Injuries/metabolism , Knee Injuries/pathology , Mice , Mice, Inbred DBA , Mice, Transgenic , Teratoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...