Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Oral Biol ; 83: 209-213, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28802192

ABSTRACT

(Objective) The subventricular zone in mice generates a lot of neuroblasts even during adulthood. These neuroblasts migrate to the olfactory bulb and differentiate into inhibitory interneurons such as granule cells and periglomerular cells. Olfactory sensory neurons receive information from various odorants and transmit it to the olfactory bulb. Our previous study showed that soft-diet feeding impairs neurogenesis in the subventricular zone, in turn leading to the reduction of odor-induced behaviors and Fos-immunoreactivities, the latter of which are markers of neural activity, at the olfactory bulb after exposure to odors. Release of GABA from inhibitory interneurons at the olfactory bulb induces inhibitory currents at the mitral cells, which are output neurons from the olfactory bulb. (Design) In the present study, we measured spontaneous inhibitory postsynaptic currents (sIPSCs) at the mitral cells of mice fed a soft diet in order to explore the effects of changes in texture of diets on neural function at the olfactory bulb. (Results) The soft-diet feeding extended the intervals between sIPSCs and reduced their peak amplitudes. (Conclusions) The present results suggest that soft-diet feeding in mice attenuates the neural functions of inhibitory interneurons at the olfactory bulb.


Subject(s)
Diet , Mastication/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Synaptic Transmission/physiology , Animals , Bicuculline/pharmacology , Male , Mice , Mice, Inbred BALB C , Olfactory Bulb/physiology
2.
Arch Oral Biol ; 59(12): 1272-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25150532

ABSTRACT

OBJECTIVES: A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. DESIGN: Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. RESULTS: The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. CONCLUSIONS: The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB.


Subject(s)
Diet , Mastication/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Smell/physiology , Animals , Bromodeoxyuridine , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/physiology , Pheromones/urine , Proto-Oncogene Proteins c-fos , Time Factors
3.
PLoS One ; 9(5): e97309, 2014.
Article in English | MEDLINE | ID: mdl-24817277

ABSTRACT

The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB.


Subject(s)
Diet , Lateral Ventricles/cytology , Mastication/physiology , Neurogenesis/physiology , Smell/physiology , Analysis of Variance , Animals , Bromodeoxyuridine , Butyric Acid/metabolism , Female , Immunohistochemistry , Mice , Mice, Inbred C57BL , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Stimulation, Chemical , Time Factors , Trigeminal Nuclei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...