Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 15(1): 100054, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33516031

ABSTRACT

Conventional agriculture is specializing rapidly into the management of few monoculture crops, threatening crop diversity and questioning the sustainability of extensive cropping systems. The grazing of cover crops in integrated crop-livestock systems could be a feasible biologically based technology to restore crop diversity and mitigate ecological issues in cropping systems. However, there is limited evidence on plausible synergies or trade-offs for the practice, and about how grazing plans could affect the herbage production and services from cover crops. This work assessed the effects of cattle grazing on the primary and secondary production of annual ryegrass (Lolium multiflorum) in an integrated ryegrass-soybean rotation system. Specifically, the prediction for synergistic effects of cattle grazing on the ryegrass herbage production, residual crop cover and animal performance were tested in a 2-year (2014 and 2015) study comprising a randomized complete block design of four grazing intensity treatments, replicated three times. A no-cattle grazing treatment (NG), used as control, or continuous grazing with Holstein heifers (~220kg live weight) at targeted sward heights of 5, 10, 15 and 20cm (hereafter referred as G5, G10, G15 and G20, respectively) was applied to ryegrass plots. The herbage production and residual herbage cover of ryegrass, and the average daily gain (ADG, kg/day) and live weight gain per hectare (LWG, kg/ha) of heifers were analyzed by ANOVA (P<0.05) and compared by the TukeyHSD test (P<0.05). Regression models were used to estimate relationships between herbage production, animal performance and sward height. The herbage production was 60% higher (P<0.01) for the grazing treatments compared to NG. The residual herbage for G15 and G20 was not different than that for NG and increased linearly as sward heights increased, reaching highest values for G15 and G20. Maximum ADG was 1.10kg/day for ryegrass grazed at a 20.6cm height, whereas maximum LWG was 427kg/ha for ryegrass grazed to a 16.1cm height. The results support the hypothesis for synergistic effects of using annual ryegrass as a dual forage and service cover crop. Moderate grazing intensity to sward height of 12-18cm with continuous stocking led to optimized forage production and utilization by dairy heifers.


Subject(s)
Livestock , Lolium , Animal Feed/analysis , Animals , Cattle , Crops, Agricultural , Diet , Female , Seasons
2.
Animal ; 12(5): 973-982, 2018 May.
Article in English | MEDLINE | ID: mdl-28994354

ABSTRACT

Accurate measurement of herbage intake rate is critical to advance knowledge of the ecology of grazing ruminants. This experiment tested the integration of behavioral and acoustic measurements of chewing and biting to estimate herbage dry matter intake (DMI) in dairy cows offered micro-swards of contrasting plant structure. Micro-swards constructed with plastic pots were offered to three lactating Holstein cows (608±24.9 kg of BW) in individual grazing sessions (n=48). Treatments were a factorial combination of two forage species (alfalfa and fescue) and two plant heights (tall=25±3.8 cm and short=12±1.9 cm) and were offered on a gradient of increasing herbage mass (10 to 30 pots) and number of bites (~10 to 40 bites). During each grazing session, sounds of biting and chewing were recorded with a wireless microphone placed on the cows' foreheads and a digital video camera to allow synchronized audio and video recordings. Dry matter intake rate was higher in tall alfalfa than in the other three treatments (32±1.6 v. 19±1.2 g/min). A high proportion of jaw movements in every grazing session (23 to 36%) were compound jaw movements (chew-bites) that appeared to be a key component of chewing and biting efficiency and of the ability of cows to regulate intake rate. Dry matter intake was accurately predicted based on easily observable behavioral and acoustic variables. Chewing sound energy measured as energy flux density (EFD) was linearly related to DMI, with 74% of EFD variation explained by DMI. Total chewing EFD, number of chew-bites and plant height (tall v. short) were the most important predictors of DMI. The best model explained 91% of the variation in DMI with a coefficient of variation of 17%. Ingestive sounds integrate valuable information to remotely monitor feeding behavior and predict DMI in grazing cows.


Subject(s)
Cattle/physiology , Eating , Feeding Behavior , Mastication , Acoustics , Animals , Female , Lactation , Medicago sativa , Poaceae
3.
J Dairy Sci ; 98(12): 8913-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26506553

ABSTRACT

The objective of this study was to use spot short-term measurements of CH4 (QCH4) and CO2 (QCO2) integrated with backward dietary energy partition calculations to estimate dry matter intake (DMI) in lactating dairy cows. Twelve multiparous cows averaging 173±37d in milk and 4 primiparous cows averaging 179±27d in milk were blocked by days in milk, parity, and DMI (as a percentage of body weight) and, within each block, randomly assigned to 1 of 2 treatments: ad libitum intake (AL) or restricted intake (RI=90% DMI) according to a crossover design. Each experimental period lasted 22d with 14d for treatments adaptation and 8d for data and sample collection. Diets contained (dry matter basis): 40% corn silage, 12% grass-legume haylage, and 48% concentrate. Spot short-term gas measurements were taken in 5-min sampling periods from 15 cows (1 cow refused sampling) using a portable, automated, open-circuit gas quantification system (GreenFeed, C-Lock Inc., Rapid City, SD) with intervals of 12h between the 2daily samples. Sampling points were advanced 2h from a day to the next to yield 16 gas samples per cow over 8d to account for diurnal variation in QCH4 and QCO2. The following equations were used sequentially to estimate DMI: (1) heat production (MJ/d)=(4.96 + 16.07 ÷ respiratory quotient) × QCO2; respiratory quotient=0.95; (2) metabolizable energy intake (MJ/d)=(heat production + milk energy) ± tissue energy balance; (3) digestible energy (DE) intake (MJ/d)=metabolizable energy + CH4 energy + urinary energy; (4) gross energy (GE) intake (MJ/d)=DE + [(DE ÷ in vitro true dry matter digestibility) - DE]; and (5) DMI (kg/d)=GE intake estimated ÷ diet GE concentration. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) and Fit Model procedure in JMP (α=0.05; SAS Institute Inc.). Cows significantly differed in DMI measured (23.8 vs. 22.4kg/d for AL and RI, respectively). Dry matter intake estimated using QCH4 and QCO2 coupled with dietary backward energy partition calculations (Equations 1 to 5 above) was highest in cows fed for AL (22.5 vs. 20.2kg/d). The resulting R(2) were 0.28 between DMI measured and DMI estimated by gaseous measurements, and 0.36 between DMI measured and DMI predicted by the National Research Council model (2001). Results showed that spot short-term measurements of QCH4 and QCO2 coupled with dietary backward estimations of energy partition underestimated DMI by 7.8%. However, the approach proposed herein was able to significantly discriminate differences in DMI between cows fed for AL or RI.


Subject(s)
Carbon Dioxide/analysis , Diet/veterinary , Lactation , Methane/analysis , Animals , Body Weight , Cattle , Energy Intake , Energy Metabolism , Female , Milk/chemistry , Milk/metabolism , Parity , Poaceae/chemistry , Sensitivity and Specificity , Silage , Zea mays/chemistry
4.
Animal ; 9(12): 2039-49, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343791

ABSTRACT

The throughput of automatic milking systems (AMS) is likely affected by differential traffic behavior and subsequent effects on the milking frequency and milk production of cows. This study investigated the effect of increasing stocking rate and partial mixed ration (PMR) on the milk production, dry matter intake (DMI), feed conversion efficiency (FCE) and use of AMS by two genotypes of Holstein-Friesian cows in mid-lactation. The study lasted 8 weeks and consisted in a factorial arrangement of two genotypes of dairy cattle, United States Holstein (USH) or New Zealand Friesian (NZF), and two pasture-based feeding treatments, a low stocking rate system (2 cows/ha) fed temperate pasture and concentrate, or a high stocking rate system (HSR; 3 cows/ha) fed same pasture and concentrate plus PMR. A total of 28 cows, 14 USH and 14 NZF, were used for comparisons, with 12 cows, six USH and six NZF, also used for tracking of animal movements. Data were analyzed by repeated measure mixed models for a completely randomized design. No differences (P>0.05) in pre- or post-grazing herbage mass, DMI and FCE were detected in response to increases in stocking rate and PMR feeding in HSR. However, there was a significant (P<0.05) grazing treatment×genotype×week interaction on milk production, explained by differential responses of genotypes to changes in herbage mass over time (P<0.001). A reduction (P<0.01) in hours spent on pasture was detected in response to PMR supplementation in HSR; this reduction was greater (P=0.01) for USH than NZF cows (6 v. 2 h, respectively). Regardless of the grazing treatment, USH cows had greater (P=0.02) milking frequency (2.51 v. 2.26±0.08 milkings/day) and greater (P<0.01) milk yield (27.3 v. 16.0±1.2 kg/day), energy-corrected milk (24.8 v. 16.5±1.0 kg/day), DMI (22.1 v. 16.6±0.8 kg/day) and FCE (1.25 v. 1.01±0.06 kg/kg) than NZF cows. There was also a different distribution of milkings/h between genotypes (P<0.001), with patterns of milkings/h shifting (P<0.001) as a consequence of PMR feeding in HSR. Results confirmed the improved FCE of grazing dairy cows with greater milk production and suggested the potential use of PMR feeding as a tactical decision to managing HSR and milkings/day in AMS farms.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Dairying/methods , Dietary Supplements , Milk/metabolism , Animals , Cattle/genetics , Dairying/instrumentation , Female , Genotype , Lactation
5.
J Dairy Sci ; 98(10): 7248-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254528

ABSTRACT

Proper performance monitoring of cows on pasture-based diets is crucial to inform nutritional recommendations that minimize undesirable effects of high ruminant CH4 emissions into the environment. The prediction of linkages between rumination patterns, methane emissions, and correlated production traits of cows in a pasture-based automatic milking system was tested. A previous 10-d baseline measurement of rumination activity by acoustic methodology of 156 Holstein-Friesian cows was used for frequency analysis of rumination time and identification of 2 treatment groups (n = 37 cows/group) represented by cows with consistently high (HR; 75th rumination percentile = 617.55 ± 81.37 min/d) or low (LR; 25th rumination percentile = 356.65 ± 72.67 min/d) rumination. The HR and LR cows were paired by nearest parity, days in milk, body weight (BW), and previous 10-d milk production, and within pairs randomly assigned to 1 of 2 experimental groups managed on a voluntary milking system with diets consisting of at least 75% pasture, plus concentrates. Animal traits, including rumination time, mass flux of CH4 (QCH4) and carbon dioxide (QCO2), milk production, and estimated dry matter intake according to individual QCO2 fluxes over a 22-d period were analyzed with repeated measure mixed models for a completely randomized design, structural equation modeling, and nonlinear regression. High rumination and methane was seen in older and heavier cows that had greater estimated dry matter intake and milk production. A consistent difference in rumination time and QCH4 across days was detected between HR and LR, even after adjustment for metabolic BW. Estimated dry matter intake had direct positive effects on rumination and QCH4, but no independent direct effect of rumination on QCH4 was detected. The LR cows produced more QCH4/milk, associated with lower milk, BW, concentrate intake, and greater activity at pasture. A typical dilution of maintenance effect on QCH4/milk was detected as a consequence of increasing milk yield and similar significant reduction of QCO2/milk. The results raise challenging questions regarding the rumination patterning of grazing dairy cows and alternatives to reduce ruminant methane emissions in grazing dairy cows.


Subject(s)
Cattle/physiology , Diet/veterinary , Feeding Behavior , Methane/metabolism , Milk/metabolism , Animals , Automation , Body Weight , Dairying/instrumentation , Dairying/methods , Female , Lactation , Nonlinear Dynamics , Random Allocation
6.
Animal ; 8(6): 991-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24673841

ABSTRACT

We conducted an experiment to determine whether early-life social learning of feeding site selection in lambs was sex-specific. Sixteen ewes and their new born lambs were used in a controlled experiment. Eight ewe-lamb pairs included a male lamb and the remaining eight a female lamb. All pairs were individually exposed to an experimental arena containing a safe and unsafe artificial feeding site (SFS, UFS) each consisting of nine bowls which contained either ground Bermuda grass hay (SFS) or ground alfalfa hay (UFS). The bowls in UFS were surrounded by bright orange traffic cones (visual cues). Half the ewes were trained with controlled electric shock to avoid UFS. Thus, pairs were randomly assigned to: (1) shock aversion training (SAT) to mothers of male lambs (MS); (2) SAT to mothers of female lambs (FS); (3) no aversion training (NAT, control) to mothers of male lambs (MC); and (4) NAT (control) to mothers of female lambs (FC). None of the lambs were subjected to SAT. During training, testing, extinction, and retraining ewe-lamb pairs were exposed to the arena together. Ewes were then removed from the experiment and two additional extinction phases were conducted with weaned lambs alone. Fear conditioning elicited UFS avoidance of both the trained ewes (means±s.e.m. % times observed in UFS during testing phase: FC=95.3±1.70; MC=94.4±4.87; FS=1.6±1.63; MS=0 ±0; P<0.01) and their naïve lambs (FC=83.8±6.07%; MC=76.6±6.56%; FS=30.4±7.90%; MS=33.9±9.23%; P<0.01). UFS avoidance in lambs occurred regardless of sex and tended to persist after weaning (% times observed in UFS during 1st post-weaning extinction phase: FC=92.6±4.50%; MC=89.8±6.09%; FS=45.1±10.57%; MS=43.5±10.42%; P=0.06). Fear conditioning in mothers appeared to alter sex-related differences in mother-infant behavioral synchrony by increasing and decreasing feeding synchrony of male and female lambs, respectively (FC: r=0.52, P<0.01; MC: r=-0.02, P=0.86; FS: r=0.14, P=0.26; MS: r=0.46, P<0.01). During the extinction phase mothers of ram lambs were observed feeding more often (FC=85.0±2.33%; MC=92.7±1.45%; FS=47.3±8.81%; MS=72±5.68%; P=0.02) and standing less often than ewes with daughters (FC=7.3±2.40%; MC=2.7±0.83%; FS=39.3±9.04%; MS=18.0±5.29%; P=0.06). This study suggests that social conditioning at an early age could be a viable tool to induce learning of feeding site avoidance in female and male lambs alike.


Subject(s)
Animal Husbandry , Behavior, Animal , Feeding Behavior , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Animals , Female , Male , Sex Characteristics , Social Behavior , Weaning
7.
J Chem Ecol ; 40(3): 285-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24532215

ABSTRACT

Differential plant use by herbivores has been observed for several woody plant species and has frequently been attributed to plant secondary metabolites. We examined the relationship between terpenoid concentration and Juniperus monosperma herbivory by small ruminants. Two groups of animals (10 goats or 5 goats plus 4 sheep) browsed 16 paddocks (20 × 30 m) containing one-seed juniper for six days during two seasons. Juniper leaves were sampled from 311 saplings immediately after browsing. Saplings were categorized by size (short [<0.5 m], medium [0.5-1.0 m], or tall [>1.0 m]), and by browsing intensity (light [<33 %], moderate [33-66 %], or heavy [>66 %]). Juniper bark was collected from 12 saplings during spring. Total estimated terpenoid concentrations in leaves and bark were 18.3 ± 0.3 and 8.9 ± 0.8 mg/g, respectively, and the dominant terpene in both tissues was α-pinene (11.1 ± 0.2 and 7.6 ± 0.7 mg/g, respectively). Total terpenoid concentration of juniper leaves was greater in spring than summer (20.6 ± 0.5 vs. 16.7 ± 0.3 mg/g, respectively) and was lower in short saplings than medium or tall saplings (16.5 ± 0.6 vs. 19.8 ± 0.4 and 19.5 ± 0.4 mg/g, respectively). Total terpenoid concentration of leaves also differed among the three defoliation categories (21.2 ± 0.6, 18.7 ± 0.5, and 16.1 ± 0.4 mg/g for light, moderate, and heavy, respectively). The smallest subset of terpenoids able to discriminate between light and heavy browsing intensity categories included eight compounds ([E]-ß-farnesene, bornyl acetate, γ-eudesmol, endo-fenchyl acetate, γ-cadinene, α-pinene, cis-piperitol, and cis-p-menth-2-en-1-ol). Our results suggest terpenoid concentrations in one-seed juniper are related to season, sapling size, and browsing by small ruminants.


Subject(s)
Juniperus/chemistry , Terpenes/analysis , Animals , Gas Chromatography-Mass Spectrometry , Goats , Herbivory/drug effects , Juniperus/metabolism , Plant Bark/chemistry , Plant Bark/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Seasons , Sheep , Terpenes/chemistry , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...