Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet ; 97(1): 11-24, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29666321

ABSTRACT

Glutathione S transferase (GST) family is a key contributor in the detoxification mechanism of our body.Deletion of the genes within this family has been reported in the failure of detoxification system, to some extent leading to various types of cancers and other life threatening diseases. The existing data and reports on the association of null genotype of both GSTM1 and GSTT1 genes for various diseases are inconsistent. But knowledge of the polymorphic distributions of genotypes in different populations is important for investigating the risk factors in different epidemiological studies. The present study thus aims to determine thefrequency of GSTM1 and GSTT1 null genotype frequency among four tribal groups, i.e. Mina, Garasia, Damor and Saharia of western India. A comparative analysis with different tribal as well as world population has also been undertaken to have a view of its worldwide frequency distribution. Our results reveal a frequency distribution varying from 22.6% to 66.9% with respect to GSTM1gene polymorphism and from 19.1% to 33.0% with respect to GSTT1 gene in the studied populations. To the best of our knowledge this is the first report on the GSTM1and GSTT1frequency distribution among the tribal population of western India and our study shows that the Mina tribal population has the highest frequency of GSTM1.


Subject(s)
Gene Frequency , Glutathione Transferase/genetics , Population Groups/genetics , Genotype , Humans , India
2.
BMC Evol Biol ; 8: 230, 2008 Aug 11.
Article in English | MEDLINE | ID: mdl-18691441

ABSTRACT

BACKGROUND: The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66-70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. RESULTS: The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. CONCLUSION: Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of earliest settlers' population during this period.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Evolution, Molecular , Genetics, Population , Population Dynamics , Emigration and Immigration , Gene Flow , Gene Frequency , Genetic Variation , Geography , Haplotypes , Humans , India , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...