Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 302(5652): 1967-9, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14671304

ABSTRACT

The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.


Subject(s)
Genome, Bacterial , Geobacter/genetics , Geobacter/metabolism , Metals/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Aerobiosis , Anaerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Chemotaxis , Chromosomes, Bacterial/genetics , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport , Energy Metabolism , Genes, Bacterial , Genes, Regulator , Geobacter/physiology , Hydrogen/metabolism , Movement , Open Reading Frames , Oxidation-Reduction , Phylogeny
2.
Science ; 293(5529): 498-506, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-11463916

ABSTRACT

The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.


Subject(s)
Genome, Bacterial , Sequence Analysis, DNA , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Antigens, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Vaccines , Base Composition , Carbohydrate Metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosomes, Bacterial/genetics , Computational Biology , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Duplication , Genes, Bacterial , Hexosamines/metabolism , Oligonucleotide Array Sequence Analysis , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Species Specificity , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/metabolism , Virulence , rRNA Operon
3.
Science ; 287(5459): 1809-15, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10710307

ABSTRACT

The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.


Subject(s)
Genome, Bacterial , Neisseria meningitidis/genetics , Neisseria meningitidis/pathogenicity , Sequence Analysis, DNA , Antigenic Variation , Antigens, Bacterial/immunology , Bacteremia/microbiology , Bacterial Capsules/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA Transposable Elements , Evolution, Molecular , Fimbriae, Bacterial/genetics , Humans , Meningitis, Meningococcal/microbiology , Meningococcal Infections/microbiology , Molecular Sequence Data , Mutation , Neisseria meningitidis/classification , Neisseria meningitidis/physiology , Open Reading Frames , Operon , Phylogeny , Recombination, Genetic , Serotyping , Transformation, Bacterial , Virulence/genetics
4.
Nature ; 399(6734): 323-9, 1999 May 27.
Article in English | MEDLINE | ID: mdl-10360571

ABSTRACT

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.


Subject(s)
Archaea/genetics , Genome, Bacterial , Recombination, Genetic , Thermotoga maritima/genetics , Bacterial Proteins/metabolism , DNA, Bacterial , Genes, Archaeal , Molecular Sequence Data , Multigene Family , Open Reading Frames , Phylogeny , Protein Biosynthesis , Sequence Analysis, DNA , Thermotoga maritima/classification , Thermotoga maritima/physiology , Transcription, Genetic , Transformation, Bacterial
5.
Nature ; 388(6642): 539-47, 1997 Aug 07.
Article in English | MEDLINE | ID: mdl-9252185

ABSTRACT

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.


Subject(s)
Genome, Bacterial , Helicobacter pylori/genetics , Antigenic Variation , Bacterial Adhesion , Bacterial Proteins/metabolism , Base Sequence , Biological Evolution , Cell Division , DNA Repair , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Helicobacter pylori/metabolism , Helicobacter pylori/pathogenicity , Hydrogen-Ion Concentration , Molecular Sequence Data , Protein Biosynthesis , Recombination, Genetic , Transcription, Genetic , Virulence
6.
Science ; 270(5235): 397-403, 1995 Oct 20.
Article in English | MEDLINE | ID: mdl-7569993

ABSTRACT

The complete nucleotide sequence (580,070 base pairs) of the Mycoplasma genitalium genome, the smallest known genome of any free-living organism, has been determined by whole-genome random sequencing and assembly. A total of only 470 predicted coding regions were identified that include genes required for DNA replication, transcription and translation, DNA repair, cellular transport, and energy metabolism. Comparison of this genome to that of Haemophilus influenzae suggests that differences in genome content are reflected as profound differences in physiology and metabolic capacity between these two organisms.


Subject(s)
Genome, Bacterial , Mycoplasma/genetics , Sequence Analysis, DNA , Antigenic Variation/genetics , Bacterial Proteins/genetics , Biological Transport/genetics , DNA Repair/genetics , DNA Replication/genetics , DNA, Bacterial/genetics , Databases, Factual , Energy Metabolism/genetics , Genes, Bacterial , Haemophilus influenzae/genetics , Molecular Sequence Data , Mycoplasma/immunology , Mycoplasma/metabolism , Open Reading Frames , Protein Biosynthesis , Transcription, Genetic
7.
Nature ; 366(6457): 748-51, 1993.
Article in English | MEDLINE | ID: mdl-8264798

ABSTRACT

Smallpox eradication culminated the most successful antimicrobial campaign in medical history. To characterize further the linear double-stranded DNA genome of the aetiological agent of smallpox, we have determined the entire nucleotide sequence of the highly virulent variola major virus, strain Bangladesh-1975 (VAR-BSH; 186,102 base pairs, 33.7% G + C; Genbank accession number, L22579). Here we highlight features of the molecule and focus on a few of the 187 putative proteins that probably contribute to pathogenicity and virus host-range properties. One hundred and fifty proteins were markedly similar to those of vaccinia virus (smallpox vaccine), for which a complete sequence has been reported for strain Copenhagen (VAC-CPN; 191,636 base pairs, 33.3% G + C). The remaining 37 proteins reflected variola-specific sequences or open reading frame divergences for variant proteins, which are often truncated or elongated compared with their vaccinia counterparts.


Subject(s)
DNA, Viral/genetics , Genome, Viral , Variola virus/pathogenicity , Animals , Humans , Molecular Sequence Data , Restriction Mapping , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Vaccinia virus/genetics , Variola virus/genetics , Viral Proteins/physiology , Virulence
8.
Nat Genet ; 1(2): 124-31, 1992 May.
Article in English | MEDLINE | ID: mdl-1302005

ABSTRACT

A database containing mapped partial cDNA sequences from Caenorhabditis elegans will provide a ready starting point for identifying nematode homologues of important human genes and determining their functions in C. elegans. A total of 720 expressed sequence tags (ESTs) have been generated from 585 clones randomly selected from a mixed-stage C. elegans cDNA library. Comparison of these ESTs with sequence databases identified 422 new C. elegans genes, of which 317 are not similar to any sequences in the database. Twenty-six new genes have been mapped by YAC clone hybridization. Members of several gene families, including cuticle collagens, GTP-binding proteins, and RNA helicases were discovered. Many of the new genes are similar to known or potential human disease genes, including CFTR and the LDL receptor.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Amino Acid Sequence , Animals , Cloning, Molecular , Collagen/genetics , DNA/genetics , Gene Expression , Gene Library , Humans , Molecular Sequence Data , Multigene Family , Sequence Homology, Amino Acid , Species Specificity
9.
Nature ; 355(6361): 632-4, 1992 Feb 13.
Article in English | MEDLINE | ID: mdl-1538749

ABSTRACT

We recently described a new approach for the rapid characterization of expressed genes by partial DNA sequencing to generate 'expressed sequence tags'. From a set of 600 human brain complementary DNA clones, 348 were informative nuclear-encoded messenger RNAs. We have now partially sequenced 2,672 new, independent cDNA clones isolated from four human brain cDNA libraries to generate 2,375 expressed sequence tags to nuclear-encoded genes. These sequences, together with 348 brain expressed sequence tags from our previous study, comprise more than 2,500 new human genes and 870,769 base pairs of DNA sequence. These data represent an approximate doubling of the number of human genes identified by DNA sequencing and may represent as many as 5% of the genes in the human genome.


Subject(s)
Brain Chemistry/genetics , DNA/analysis , Gene Library , Sequence Tagged Sites , Databases, Bibliographic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...