Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 2(2): e21, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16482227

ABSTRACT

Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.


Subject(s)
Ehrlichia/genetics , Ehrlichiosis/genetics , Genomics/methods , Animals , Biotin/metabolism , DNA Repair , Ehrlichiosis/microbiology , Genome , Humans , Models, Biological , Phylogeny , Rickettsia/genetics , Ticks
2.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16172379

ABSTRACT

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Subject(s)
Genome, Bacterial , Streptococcus agalactiae/classification , Streptococcus agalactiae/genetics , Amino Acid Sequence , Bacterial Capsules/genetics , Base Sequence , Gene Expression , Genes, Bacterial , Genetic Variation , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Streptococcus agalactiae/pathogenicity , Virulence/genetics
3.
Science ; 309(5731): 134-7, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15994558

ABSTRACT

We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.


Subject(s)
Genome, Protozoan , Lymphocytes/parasitology , Protozoan Proteins/genetics , Theileria parva/genetics , Algorithms , Animals , Antigens, Protozoan/genetics , Cattle , Cell Proliferation , Chromosomes/genetics , Conserved Sequence , Enzymes/genetics , Enzymes/metabolism , Genes, Protozoan , Lymphocytes/cytology , Mitochondria/metabolism , Molecular Sequence Data , Organelles/genetics , Organelles/physiology , Plasmodium falciparum/genetics , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Analysis, DNA , Synteny , Telomere/genetics , Theileria parva/growth & development , Theileria parva/pathogenicity , Theileria parva/physiology
4.
Genome Res ; 15(4): 487-95, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15805490

ABSTRACT

Through comparative studies of the model organism Arabidopsis thaliana and its close relative Brassica oleracea, we have identified conserved regions that represent potentially functional sequences overlooked by previous Arabidopsis genome annotation methods. A total of 454,274 whole genome shotgun sequences covering 283 Mb (0.44 x) of the estimated 650 Mb Brassica genome were searched against the Arabidopsis genome, and conserved Arabidopsis genome sequences (CAGSs) were identified. Of these 229,735 conserved regions, 167,357 fell within or intersected existing gene models, while 60,378 were located in previously unannotated regions. After removal of sequences matching known proteins, CAGSs that were close to one another were chained together as potentially comprising portions of the same functional unit. This resulted in 27,347 chains of which 15,686 were sufficiently distant from existing gene annotations to be considered a novel conserved unit. Of 192 conserved regions examined, 58 were found to be expressed in our cDNA populations. Rapid amplification of cDNA ends (RACE) was used to obtain potentially full-length transcripts from these 58 regions. The resulting sequences led to the creation of 21 gene models at 17 new Arabidopsis loci and the addition of splice variants or updates to another 19 gene structures. In addition, CAGSs overlapping already annotated genes in Arabidopsis can provide guidance for manual improvement of existing gene models. Published genome-wide expression data based on whole genome tiling arrays and massively parallel signature sequencing were overlaid on the Brassica-Arabidopsis conserved sequences, and 1399 regions of intersection were identified. Collectively our results and these data sets suggest that several thousand new Arabidopsis genes remain to be identified and annotated.


Subject(s)
Arabidopsis/genetics , Brassica/genetics , Genes, Plant/genetics , Genome, Plant , Genomics/methods , Chromosome Mapping , Chromosomes, Plant , Conserved Sequence , DNA, Complementary/genetics , DNA, Plant/genetics , Databases, Genetic , Gene Expression Profiling , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...