Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cancer Chemother Pharmacol ; 69(4): 1051-61, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22200729

ABSTRACT

PURPOSE: To investigate the pharmacokinetics, metabolism and tolerability of afatinib (BIBW 2992), an oral irreversible ErbB family blocker, in healthy male volunteers. METHODS: In this open-label, single-center study, 8 healthy male volunteers received a single oral dose of 15 mg [(14)C]-radiolabeled afatinib (equivalent to 22.2 mg of the dimaleinate salt) as a solution. Blood, urine and fecal samples were collected for at least 96 hours (h) after dosing. Plasma and urine concentrations of afatinib were analyzed using high-performance liquid chromatography-tandem mass spectrometry. [(14)C]-radioactivity levels in plasma, whole blood, urine and feces were measured by liquid scintillation counting methods. Metabolite patterns were assessed by high-performance liquid chromatography. RESULTS: [(14)C]-radioactivity was mainly excreted via feces (85.4%). Overall recovery of [(14)C]-radioactivity was 89.5%, indicative of a complete mass balance. Afatinib was slowly absorbed, with maximum plasma concentrations achieved at a median of 6 h after dosing, declining thereafter in a biexponential manner. The geometric mean terminal half-life of afatinib was 33.9 h in plasma and longer for [(14)C]-radioactivity in plasma and whole blood. Apparent total body clearance for afatinib was high (geometric mean 1,530 mL/min). The high volume of distribution (4,500 L) in plasma may indicate a high tissue distribution. Afatinib was metabolized to only a minor extent, with the main metabolite afatinib covalently bound to plasma proteins. Oxidative metabolism mediated via cytochrome P-450 was of negligible importance for the elimination of afatinib. Afatinib was well tolerated. CONCLUSIONS: Afatinib displayed a complete mass balance with the main route of excretion via feces. Afatinib undergoes minimal metabolism.


Subject(s)
Quinazolines/pharmacokinetics , Administration, Oral , Adult , Afatinib , Carbon Radioisotopes , ErbB Receptors/antagonists & inhibitors , Humans , Male , Middle Aged , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/administration & dosage , Quinazolines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...