Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 966
Filter
1.
Methods ; 229: 147-155, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39002735

ABSTRACT

This article reviews tried-and-tested methodologies that have been employed in the first studies on phase separating properties of structural, RNA-binding and catalytic proteins of HIV-1. These are described here to stimulate interest for any who may want to initiate similar studies on virus-mediated liquid-liquid phase separation. Such studies serve to better understand the life cycle and pathogenesis of viruses and open the door to new therapeutics.

2.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981702

ABSTRACT

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Subject(s)
Porins , Yersinia pseudotuberculosis , Porins/chemistry , Porins/metabolism , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/chemistry , Animals , Mice , Amyloid/metabolism , Amyloid/chemistry , Protein Structure, Secondary , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Protein Conformation
3.
Article in English | MEDLINE | ID: mdl-38982922

ABSTRACT

The phenomenon of Liquid-Liquid Phase Separation (LLPS) serves as a vital mechanism for the spatial organization of biomolecules, significantly influencing the elementary processes within the cellular milieu. Intrinsically disordered proteins, or proteins endowed with intrinsically disordered regions, are pivotal in driving this biophysical process, thereby dictating the formation of non-membranous cellular compartments. Compelling evidence has linked aberrations in LLPS to the pathogenesis of various neurodegenerative diseases, underscored by the disordered proteins' proclivity to form pathological aggregates. This study meticulously evaluates the arsenal of contemporary experimental and computational methodologies dedicated to the examination of intrinsically disordered proteins within the context of LLPS. Through a discerning discourse on the capabilities and constraints of these investigative techniques, we unravel the intricate contributions of these ubiquitous proteins to LLPS and neurodegeneration. Moreover, we project a future trajectory for the field, contemplating on innovative research tools and their potential to elucidate the underlying mechanisms of LLPS, with the ultimate goal of fostering new therapeutic avenues for combating neurodegenerative disorders.

4.
Viruses ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932209

ABSTRACT

A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.


Subject(s)
Intrinsically Disordered Proteins , Rabies virus , Virion , Rabies virus/physiology , Animals , Mice , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Virion/metabolism , Proteomics , Host-Pathogen Interactions , Rabies/virology , Computational Biology/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry
5.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928046

ABSTRACT

This review covers the analytical applications of protein partitioning in aqueous two-phase systems (ATPSs). We review the advancements in the analytical application of protein partitioning in ATPSs that have been achieved over the last two decades. Multiple examples of different applications, such as the quality control of recombinant proteins, analysis of protein misfolding, characterization of structural changes as small as a single-point mutation, conformational changes upon binding of different ligands, detection of protein-protein interactions, and analysis of structurally different isoforms of a protein are presented. The new approach to discovering new drugs for a known target (e.g., a receptor) is described when one or more previous drugs are already available with well-characterized biological efficacy profiles.


Subject(s)
Proteins , Water , Water/chemistry , Proteins/chemistry , Proteins/metabolism , Protein Folding , Humans , Protein Binding , Protein Conformation , Ligands , Recombinant Proteins/chemistry
7.
Protein Pept Lett ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38910419

ABSTRACT

BACKGROUND: The rat intestinal fatty acid-binding protein (I-FABP) is expressed in the small intestine and is involved in the absorption and transport of dietary fatty acids. It is used as a marker for intestinal injury and is associated with various gastrointestinal disorders. I-FABP has been studied extensively using conventional experimental and computational techniques. However, the detection of intrinsically disordered regions requires the application of special sampling molecular dynamics simulations along with certain bioinformatics because conventional computational and experimental studies face challenges in identifying the features of intrinsic disorder. METHOD: Replica exchange molecular dynamics simulations were conducted along with bioinformatics studies to gain deeper insights into the structural properties of I-FABP. Specifically, the Cα and Hα chemical shift values werecalculated, and the findings were compared to the experiments. Furthermore, secondary and tertiary structure properties were also calculated, and the protein was clustered using k-means clustering. The end-to-end distance and radius of gyration values were reported for the protein in an aqueous solution medium. In addition, its disorder tendency was studied using various bioinformatics tools. RESULTS AND CONCLUSION: It was reported that I-FABP is a flexible protein with regions that demonstrate intrinsic disorder characteristics. This flexibility and intrinsic disorder characteristics of I-- FABP may be related to its nature in ligand binding processes.

8.
Cancers (Basel) ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893150

ABSTRACT

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.

9.
Protein J ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824467

ABSTRACT

Actin is present in the cytoplasm and nucleus of every eukaryotic cell. In the cytoplasm, framework and motor functions of actin are associated with its ability to polymerize to form F-actin. In the nucleus, globular actin plays a significant functional role. For a globular protein, actin has a uniquely large number of proteins with which it interacts. Bioinformatics analysis of the actin interactome showed that only a part of actin-binding proteins are both cytoplasmic and nuclear. There are proteins that interact only with cytoplasmic, or only with nuclear actin. The first pool includes proteins associated with the formation, regulation, and functioning of the actin cytoskeleton predominate, while nuclear actin-binding proteins are involved in the majority of key nuclear processes, from regulation of transcription to DNA damage response. Bioinformatics analysis of the structure of actin-binding proteins showed that these are mainly intrinsically disordered proteins, many of which are part of membrane-less organelles. Interestingly, although the number of intrinsically disordered actin-binding proteins in the nucleus is greater than in the cytoplasm, the drivers for the formation of the membrane-less organelles in the cytoplasm are significantly (four times) greater than in the nucleus.

10.
Prog Mol Biol Transl Sci ; 206: 473-494, 2024.
Article in English | MEDLINE | ID: mdl-38811088

ABSTRACT

Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.


Subject(s)
Protein Aggregates , Humans , Animals , Protein Folding , Proteins/metabolism , Proteins/chemistry , Protein Aggregation, Pathological/metabolism
11.
Prog Mol Biol Transl Sci ; 206: 111-141, 2024.
Article in English | MEDLINE | ID: mdl-38811079

ABSTRACT

Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.


Subject(s)
Amyloid , Protein Multimerization , Humans , Animals , Amyloid/metabolism , Amyloid/chemistry
12.
bioRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38746434

ABSTRACT

Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane proteins in streptococci. We demonstrate that these IDRs are O -glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae , and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans . Absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans . We link this phenotype to the C-terminal IDR of a post-translocation secretion chaperone PrsA. O -glycosylation of the IDR protects this region from proteolytic degradation. The IDR length attenuates the efficiency of glycosylation and, consequently, the expression level of PrsA. Taken together, our data reveal that O -glycosylation of IDRs functions as a dynamic switch of protein homeostasis in streptococci.

13.
Prog Mol Biol Transl Sci ; 206: 341-388, 2024.
Article in English | MEDLINE | ID: mdl-38811085

ABSTRACT

A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-ß-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.


Subject(s)
Amyloidosis , Humans , Animals , Amyloidosis/therapy , Amyloidosis/pathology , Amyloid/metabolism , Proteostasis Deficiencies/therapy , Genetic Therapy
14.
Prog Mol Biol Transl Sci ; 206: 1-10, 2024.
Article in English | MEDLINE | ID: mdl-38811077

ABSTRACT

In order for an ordered protein to perform its specific function, it must have a specific molecular structure. Information about this structure is encoded in the protein's amino acid sequence. The unique functional state is achieved as a result of a specific process, known as protein folding. However, as a result of partial or complete unfolding of the polypeptide chain, proteins may misfold and aggregate, leading to the formation of various aggregated structures, such as like amyloid aggregates with the cross-ß structure. A variety of cellular biological processes can be affected by protein aggregates that consume essential factors necessary for maintaining proteostasis, which leads to the proteostasis imbalance and further accumulation of protein aggregates, often resulting in age-related neurodegenerative disease progression and aging. However, in addition to their well-established pathological effects, amyloids also play various physiological roles, and many important biological processes involve such 'functional amyloids'. This chapter represents a brief overview of the protein aggregation phenomenon outlines a timeline provides of some key discoveries in this exciting field.


Subject(s)
Protein Aggregates , Humans , Animals , Amyloid/metabolism , Amyloid/chemistry , Protein Aggregation, Pathological/metabolism , Protein Folding , Proteins/metabolism , Proteins/chemistry
15.
Prog Mol Biol Transl Sci ; 206: 85-109, 2024.
Article in English | MEDLINE | ID: mdl-38811090

ABSTRACT

In vivo, protein aggregation arises due to incorrect folding or misfolding. The aggregation of proteins into amyloid fibrils is the characteristic feature of various misfolding diseases known as amyloidosis, such as Alzheimer's and Parkinson's disease. The heterogeneous nature of these fibrils restricts the extent to which their structure may be characterized. Advancements in techniques, such as X-ray diffraction, cryo-electron microscopy, and solid-state NMR have yielded intricate insights into structures of different amyloid fibrils. These studies have unveiled a diverse range of polymorphic structures that typically conform to the cross-ß amyloid pattern. This chapter provides a concise overview of the information acquired in the field of protein aggregation, with particular focus on amyloids.


Subject(s)
Amyloid , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Animals , Protein Aggregates
17.
Prog Mol Biol Transl Sci ; 206: 143-182, 2024.
Article in English | MEDLINE | ID: mdl-38811080

ABSTRACT

Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.


Subject(s)
Phase Transition , Humans , Animals , Liquid-Liquid Extraction , Amyloid/chemistry , Amyloid/metabolism , Phase Separation
18.
Int J Biol Macromol ; 269(Pt 1): 131960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697430

ABSTRACT

Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.


Subject(s)
Genomics , Muscular Atrophy, Spinal , Phenylalanine Hydroxylase , Phenylketonurias , Rare Diseases , Survival of Motor Neuron 1 Protein , Muscular Atrophy, Spinal/genetics , Phenylketonurias/genetics , Humans , Phenylalanine Hydroxylase/genetics , Survival of Motor Neuron 1 Protein/genetics , Genomics/methods , Rare Diseases/genetics , Mutation , Saudi Arabia/epidemiology
19.
Int J Biol Macromol ; 267(Pt 1): 131274, 2024 May.
Article in English | MEDLINE | ID: mdl-38569991

ABSTRACT

The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.


Subject(s)
Intrinsically Disordered Proteins , Proteome , Vitreous Body , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Proteome/metabolism , Vitreous Body/metabolism , Eye Proteins/metabolism
20.
J Phys Chem B ; 128(18): 4283-4300, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38683125

ABSTRACT

Kidney-associated human lysozyme amyloidosis leads to renal impairments;thus, patients are often prescribed furosemide. Based on this fact, the effect of furosemide on induced human lysozyme fibrillation, in vitro, is evaluated by spectroscopic, calorimetric, computational, and cellular-based assays/methods. Results show that furosemide increases the lag phase and decreases the apparent rate of aggregation of human lysozyme, thereby decelerating the nucleation phase and amyloid fibril formation, as confirmed by the decrease in the level of Thioflavin-T fluorescence. Fewer entities of hydrodynamic radii of ∼171 nm instead of amyloid fibrils (∼412 nm) are detected in human lysozyme in the presence of furosemide by dynamic light scattering. Moreover, furosemide decreases the extent of conversion of the α/ß structure of human lysozyme into a predominant ß-sheet. The isothermal titration calorimetry established that furosemide forms a complex with human lysozyme, which was also confirmed through fluorescence quenching and computational studies. Also, human lysozyme lytic activity is inhibited competitively by furosemide due to the involvement of amino acid residues of the active site in catalysis, as well as complex formation. Conclusively, furosemide interacts with Gln58, Ile59, Asn60, Ala108, and Trp109 of aggregation-prone regions 2 and 4 of human lysozyme, thereby masking its sites of aggregation and generating only lower-order entities that are less toxic to red blood cells than the fibrils. Thus, furosemide slows the progression of amyloid fibrillation in human lysozyme.


Subject(s)
Furosemide , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Humans , Furosemide/chemistry , Furosemide/pharmacology , Protein Aggregates/drug effects , Amyloid/metabolism , Amyloid/chemistry , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...