Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723194

ABSTRACT

TALEs (transcription activator-like effectors) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harbouring only 7.5-repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence-specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death-inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.

2.
Plant Physiol Biochem ; 197: 107644, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36996636

ABSTRACT

Plant bioactive compounds provide novel straightforward approaches to control plant diseases. Rosemary (Salvia rosmarinus)-derived extracts carry many prominent pharmacological activities, including antimicrobial and antioxidant, mainly due to its phenolic compounds, rosmarinic acid (RA), carnosic acid and carnosol. However, the effects of these extracts on plant diseases are still unknown, which constrains its potential application as bioprotectant in the agricultural production. In this study we demonstrate the antiviral effect of the aqueous rosemary extract (ARE) against tobacco necrosis virus strain A (TNVA) in ARE-treated tobacco (Nicotiana tabacum) plants. Our results show that ARE-treatment enhances plant defense response, contributing to reduce virus replication and systemic movement in tobacco plants. RA, the main phenolic compound detected in this extract, is one of the main inducers of TNVA control. The ARE-induced protection in TNVA-infected plants was characterized by the expression of H2O2 scavengers and defense-related genes, involving salicylic acid- and jasmonic acid-regulated pathways. Furthermore, treatment with ARE in lemon (Citrus limon) and soybean (Glycine max) leaves protects the plants against Xanthomonas citri subsp. citri and Diaporthe phaseolorum var. meridionalis, respectively. Additionally, ARE treatment also promotes growth and development, suggesting a biostimulant activity in soybean. These results open the way for the potential use of ARE as a bioprotective agent in disease management.


Subject(s)
Rosmarinus , Salvia , Plant Extracts/pharmacology , Hydrogen Peroxide , Phenols , Antioxidants/pharmacology , Rosmarinic Acid
3.
Mol Plant Pathol ; 20(10): 1394-1407, 2019 10.
Article in English | MEDLINE | ID: mdl-31274237

ABSTRACT

Transcription activator-like effectors (TALEs) are important effectors of Xanthomonas spp. that manipulate the transcriptome of the host plant, conferring susceptibility or resistance to bacterial infection. Xanthomonas citri ssp. citri variant AT (X. citri AT ) triggers a host-specific hypersensitive response (HR) that suppresses citrus canker development. However, the bacterial effector that elicits this process is unknown. In this study, we show that a 7.5-repeat TALE is responsible for triggering the HR. PthA4AT was identified within the pthA repertoire of X. citri AT followed by assay of the effects on different hosts. The mode of action of PthA4AT was characterized using protein-binding microarrays and testing the effects of deletion of the nuclear localization signals and activation domain on plant responses. PthA4AT is able to bind DNA and activate transcription in an effector binding element-dependent manner. Moreover, HR requires PthA4AT nuclear localization, suggesting the activation of executor resistance (R) genes in host and non-host plants. This is the first case where a TALE of unusually short length performs a biological function by means of its repeat domain, indicating that the action of these effectors to reprogramme the host transcriptome following nuclear localization is not limited to 'classical' TALEs.


Subject(s)
Bacterial Proteins/metabolism , Plant Diseases/microbiology , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Bacterial Proteins/genetics , Citrus/microbiology , Nicotiana/microbiology
4.
Mol Plant Pathol ; 20(2): 254-269, 2019 02.
Article in English | MEDLINE | ID: mdl-30260546

ABSTRACT

Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by Xanthomonas citri ssp. citri (X. citri); thus, new sustainable strategies to manage this disease are needed. Although all Citrus spp. are susceptible to this pathogen, they are resistant to other Xanthomonas species, exhibiting non-host resistance (NHR), for example, to the brassica pathogen X. campestris pv. campestris (Xcc) and a gene-for-gene host defence response (HDR) to the canker-causing X. fuscans ssp. aurantifolii (Xfa) strain C. Here, we examine the plant factors associated with the NHR of C. limon to Xcc. We show that Xcc induced asymptomatic type I NHR, allowing the bacterium to survive in a stationary phase in the non-host tissue. In C. limon, this NHR shared some similarities with HDR; both defence responses interfered with biofilm formation, and were associated with callose deposition, induction of the salicylic acid (SA) signalling pathway and the repression of abscisic acid (ABA) signalling. However, greater stomatal closure was seen during NHR than during HDR, together with different patterns of accumulation of reactive oxygen species and phenolic compounds and the expression of secondary metabolites. Overall, these differences, independent of Xcc type III effector proteins, could contribute to the higher protection elicited against canker development. We propose that Xcc may have the potential to steadily activate inducible defence responses. An understanding of these plant responses (and their triggers) may allow the development of a sustained and sustainable resistance to citrus canker.


Subject(s)
Citrus/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Xanthomonas campestris/pathogenicity , Abscisic Acid/metabolism , Citrus/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...