Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Genomics ; 2019: 1750291, 2019.
Article in English | MEDLINE | ID: mdl-31662957

ABSTRACT

Plasmodium falciparum, a malaria pathogen, has shown substantial resistance to treatment coupled with poor response to some vaccines thereby requiring urgent, holistic, and broad approach to prevent this endemic disease. Understanding the biology of the malaria parasite has been identified as a vital approach to overcome the threat of malaria. This study is aimed at identifying essential proteins unique to malaria parasites using a reconstructed iPfa genome-scale metabolic model (GEM) of the 3D7 strain of Plasmodium falciparum by filling gaps in the model with nineteen (19) metabolites and twenty-three (23) reactions obtained from the MetaCyc database. Twenty (20) currency metabolites were removed from the network because they have been identified to produce shortcuts that are biologically infeasible. The resulting modified iPfa GEM was a model using the k-shortest path algorithm to identify possible alternative metabolic pathways in glycolysis and pentose phosphate pathways of Plasmodium falciparum. Heuristic function was introduced for the optimal performance of the algorithm. To validate the prediction, the essentiality of the reactions in the reconstructed network was evaluated using betweenness centrality measure, which was applied to every reaction within the pathways considered in this study. Thirty-two (32) essential reactions were predicted among which our method validated fourteen (14) enzymes already predicted in the literature. The enzymatic proteins that catalyze these essential reactions were checked for homology with the host genome, and two (2) showed insignificant similarity, making them possible drug targets. In conclusion, the application of the intelligent search technique to the metabolic network of P. falciparum predicts potential biologically relevant alternative pathways using graph theory-based approach.

2.
Biomed Res Int ; 2018: 8985718, 2018.
Article in English | MEDLINE | ID: mdl-29789805

ABSTRACT

Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets.


Subject(s)
Antimalarials/pharmacokinetics , Drug Discovery/methods , Malaria, Falciparum , Metabolome , Models, Biological , Plasmodium falciparum/metabolism , Antimalarials/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism
3.
Bioinform Biol Insights ; 10: 237-253, 2016.
Article in English | MEDLINE | ID: mdl-27932867

ABSTRACT

Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

SELECTION OF CITATIONS
SEARCH DETAIL
...