Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(4): 975-978, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30768039

ABSTRACT

We analyze experimentally and theoretically the chaotic dynamics generated by a laser diode subjected to phase-conjugate feedback. Phase conjugation is obtained from four-wave mixing in a BaTiO3 photorefractive crystal. We demonstrate that the chaos bandwidth first increases linearly with feedback ratio but then saturates to relatively high values. With a single optical feedback, a chaos bandwidth up to about 18 GHz is achieved, which is about five times as large as the free-running laser diode relaxation oscillation frequency. Numerical simulations confirm our experimental observations and unveil that the finite depth penetration into the crystal is responsible for the observed saturation.

2.
Opt Express ; 26(13): 16917-16924, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119510

ABSTRACT

We report experimentally and theoretically the emergence of sustained oscillations over a slow and periodic polarization switching in a laser subjected to polarization rotated optical feedback. This phenomenon originates from a clear bifurcation point that marks the transition between sustained and damped oscillations on the plateaus. Analytical study reveals also that the frequency of this new oscillatory dynamics is independent of the time delay.

3.
Chaos ; 27(11): 114314, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195335

ABSTRACT

We numerically investigate the dynamics of a semiconductor laser subject to phase-conjugate optical feedback. We explore the effects of the laser model and feedback parameters for the generation of time-periodic oscillations of the output power at harmonics of the external cavity frequency, i.e., dynamical solutions that have been named external cavity modes. We point out that both the experimentally tunable and other parameters have an influence on the frequency of such dynamics. Since the delay has to exist, it is not the relevant parameter as we show that the feedback rate fixes the frequency of the periodic self-pulsations. The interaction length of the crystal and the ratio between carrier and photon lifetimes tend to filter out high frequencies as they increase. Finally, the linewidth enhancement factor unlocks high frequencies as it increases. We conclude by providing a situation which leads to periodic solutions with higher frequencies using a set of realistic values of parameters.

4.
Opt Lett ; 42(11): 2177-2180, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569875

ABSTRACT

We report on the occurrence of extreme events (EEs) in the polarization dynamics of vertical cavity surface emitting lasers with optical feedback. We have identified two types of EEs based on numerical simulations: vectorial and scalar events corresponding, respectively, to the emission of a high-power pulse in both linear polarizations simultaneously and in single linear polarization. We show that these two types of events follow the typical statistics of rogue waves. Finally, we observe that an emission in both polarizations leads to a larger generation rate of EEs with a saturation over a wide range of feedback strength by comparison to a single-polarization mode emission.

5.
Opt Express ; 25(6): 6914-6923, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28381033

ABSTRACT

Similar to edge-emitting lasers, vertical cavity surface emitting lasers (VCSELs) subjected to optical feedback are known for exhibiting erratic fluctuations of their optical power at slow and fast time scales; these are called low-frequency fluctuations (LFF). Here, we demonstrate both experimentally and numerically that the chaotic itinerancy in phase space associated with LFF has a deep connection with the creation of non-local correlations at multiple time scales between the two linear polarization modes. Our result provides a novel framework to interpret the unknown origin of spectral signatures in the optical power of chaotic lasers with optical feedback, which were observed in the past two decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...