Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(13): 3586-3604, 2023 07.
Article in English | MEDLINE | ID: mdl-36994802

ABSTRACT

After establishing secondary contact, recently diverged populations may remain reproductively isolated or may hybridize to a varying extent depending on factors such as hybrid fitness and the strength of assortative mating. Here, we used genomic and phenotypic data from three independent contact zones between subspecies of the variable seedeater (Sporophila corvina) to examine how coloration and genetic divergence shape patterns of hybridization. We found that differences in plumage coloration are probably maintained by divergent selection across contact zones; however, the degree of plumage differentiation does not match overall patterns of hybridization. Across two parallel contact zones between populations with divergent phenotypes (entirely black vs. pied plumage), populations hybridized extensively across one contact zone but not the other, suggesting that plumage divergence is not sufficient to maintain reproductive isolation. Where subspecies hybridized, hybrid zones were wide and formed by later-generation hybrids, suggesting frequent reproduction and high survivorship for hybrid individuals. Moreover, contemporary gene flow has played an important role in shaping patterns of genetic structure between populations. Replicated contact zones between hybridizing taxa offer a unique opportunity to explore how different factors interact to shape patterns of hybridization. Overall, our results demonstrate that divergence in plumage coloration is important in reducing gene flow but insufficient in maintaining reproductive isolation in this clade, and that other factors such as divergence in song and time since secondary contact may also play an important role in driving patterns of reduced hybridization and gene flow.


Al establecer contacto secundario, las poblaciones que divergieron recientemente pueden permanecer reproductivamente aisladas o pueden hibridarse en distintos grados, dependiendo de factores como la aptitud (fitness) y la fuerza del apareamiento selectivo. Aquí, utilizamos datos genómicos y fenotípicos de tres zonas de contacto independientes entre subespecies del Semillero Variable (Sporophila corvina), para examinar cómo la coloración y la divergencia genética regulan los patrones de hibridación. A través de las zonas de contacto, encontramos que las diferencias en la coloración del plumaje posiblemente se mantienen por selección divergente, pero el grado de diferenciación no coincide con los patrones generales de hibridación. En dos zonas de contacto análogas entre poblaciones con fenotipos divergentes (totalmente negro vs plumaje de varios colores), las poblaciones hibridaron ampliamente en una zona de contacto, pero no en la otra, lo que sugiere que la divergencia del plumaje no es suficiente para mantener el aislamiento reproductivo. Donde las subespecies hibridaron, las zonas híbridas eran amplias y estaban formadas por híbridos de generaciones posteriores, lo que sugiere reproducción frecuente y alta sobrevivencia de los híbridos. Además, el flujo génico ha desempeñado un papel importante en la configuración de patrones de estructura genética entre poblaciones. Las réplicas de zonas de contacto entre taxones que hibridan ofrecen una oportunidad para explorar cómo interactúan diversos factores para dar forma a los patrones de hibridación. En general, nuestros resultados demuestran que la divergencia en la coloración del plumaje es importante para reducir el flujo génico, pero insuficiente para mantener el aislamiento reproductivo en este clado, y que otros factores, como la divergencia en el canto y el tiempo transcurrido desde el contacto secundario, también pueden desempeñar un papel importante en la reducción del flujo génico e hibridación.


Subject(s)
Passeriformes , Reproductive Isolation , Animals , Passeriformes/genetics , Genetic Drift , Hybridization, Genetic , Gene Flow
2.
PLoS Genet ; 18(11): e1010474, 2022 11.
Article in English | MEDLINE | ID: mdl-36318577

ABSTRACT

Insular organisms often evolve predictable phenotypes, like flightlessness, extreme body sizes, or increased melanin deposition. The evolutionary forces and molecular targets mediating these patterns remain mostly unknown. Here we study the Chestnut-bellied Monarch (Monarcha castaneiventris) from the Solomon Islands, a complex of closely related subspecies in the early stages of speciation. On the large island of Makira M. c. megarhynchus has a chestnut belly, whereas on the small satellite islands of Ugi, and Santa Ana and Santa Catalina (SA/SC) M. c. ugiensis is entirely iridescent blue-black (i.e., melanic). Melanism has likely evolved twice, as the Ugi and SA/SC populations were established independently. To investigate the genetic basis of melanism on each island we generated whole genome sequence data from all three populations. Non-synonymous mutations at the MC1R pigmentation gene are associated with melanism on SA/SC, while ASIP, an antagonistic ligand of MC1R, is associated with melanism on Ugi. Both genes show evidence of selective sweeps in traditional summary statistics and statistics derived from the ancestral recombination graph (ARG). Using the ARG in combination with machine learning, we inferred selection strength, timing of onset and allele frequency trajectories. MC1R shows evidence of a recent, strong, soft selective sweep. The region including ASIP shows more complex signatures; however, we find evidence for sweeps in mutations near ASIP, which are comparatively older than those on MC1R and have been under relatively strong selection. Overall, our study shows convergent melanism results from selective sweeps at independent molecular targets, evolving in taxa where coloration likely mediates reproductive isolation with the neighboring chestnut-bellied subspecies.


Subject(s)
Melanosis , Passeriformes , Animals , Receptor, Melanocortin, Type 1/genetics , Pigmentation/genetics , Melanosis/genetics , Passeriformes/genetics , Gene Frequency
3.
Mol Phylogenet Evol ; 173: 107510, 2022 08.
Article in English | MEDLINE | ID: mdl-35577291

ABSTRACT

Disentangling the evolutionary relationships of rapidly radiating clades is often challenging because of low genetic differentiation and potentially high levels of gene flow among diverging taxa. The genus Sporophila consists of small Neotropical birds that show, in general, relatively low genetic divergence, but particularly high speciation rates and pronounced variation in secondary sexual traits (e.g., plumage color), which can be important in generating premating reproductive isolation. In cases like these, the use of genome-wide sequence data can increase the resolution to uncover a clade's evolutionary history. Here, we used a phylogenomic approach to study the evolutionary history and genetic structure of the Variable Seedeater superspecies complex, which includes S. corvina, S. intermedia, and S. americana. Using ∼25,000 genome-wide single nucleotide polymorphisms (SNPs), we confirmed that the Variable Seedeater superspecies complex is monophyletic. However, a phylogenetic reconstruction based on a mitochondrial marker (ND2) resulted in a discordant tree topology, particularly in the position of Wing-barred Seedeater S. americana, which might be due to a mitochondrial capture event. Our results suggest historical gene flow among lineages, particularly between species with conflicting topologies. Among the four phenotypically variable S. corvina subspecies, our structure analyses identified three main distinct genetic groups (K = 3), and that the entirely black subspecies, S. c. corvina, is derived from within a pied-colored clade. Further, we inferred widespread gene flow across the whole species' distribution, including between subspecies. However, gene flow was about 100 times lower at the geographic boundaries of the entirely black and the pied subspecies, suggesting an important role for plumage divergence in limiting gene flow. Overall, our findings suggest that the early diversification of the Sporophila genus occurred rapidly despite historical gene flow between lineages and that divergence in plumage color possibly influences the extent of gene flow among taxa.


Subject(s)
Gene Flow , Passeriformes , Animals , Biological Evolution , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Passeriformes/genetics , Phylogeny
4.
Ecol Evol ; 12(5): e8895, 2022 May.
Article in English | MEDLINE | ID: mdl-35592064

ABSTRACT

Disentangling the factors underlying the diversification of geographically variable species with a wide geographical range is essential to understanding the initial stages and drivers of the speciation process. The Amazilia Hummingbird, Amazilis amazilia, is found along the Pacific coast from northern Ecuador down to the Nazca Valley of Peru, and is currently classified as six phenotypically differentiated subspecies. We aimed to resolve the evolutionary relationships of the six subspecies, to assess the geographical pattern and extent of evolutionary divergence, and to test for introgression using both a mtDNA marker and a genome-by-sequencing dataset from 86 individuals from across the species range. The consensus phylogenetic tree separated the six subspecies into three distinct clades, corresponding with the Ecuador lowlands (A. amazilia dumerilii), the Ecuador highlands (A. amazilia alticola and A. amazilia azuay), and the Peruvian coast (A. amazilia leucophoea, A. amazilia amazilia, and A. amazilia caeruleigularis). However, an unresolved mtDNA network suggests that the diversification of the subspecies was recent and rapid. We found evidence of gene flow among the subspecies A. amazilia dumerilii, A. amazilia alticola, and A. amazilia leucophoea, with strong genetic isolation of the subspecies A. amazilia azuay in the isolated Yunguilla Valley of Ecuador. Finally, environmental data from each subspecies' capture locations were concordant with the three distinct clades. Overall, our results suggest that both expansions into new habitats and geographic isolation shaped the present-day phylogeny and range of the A. amazilia subspecies, and that A. amazilia azuay may be genetically divergent enough to be considered a separate species.

5.
Emu ; 121(1-2): 45-54, 2021.
Article in English | MEDLINE | ID: mdl-35264816

ABSTRACT

Because a population's ability to respond to rapid change is dictated by standing genetic variation, we can better predict a population's long-term viability by estimating and then comparing adult census size (N) and effective population size (N e ). However, most studies only measure N or N e , which can be misleading. Using a combination of field and genomic sequence data, we here estimate and compare N and N e in two range-restricted endemics of the Solomon Islands. Two Zosterops White-eye species inhabit the small island of Kolombangara, with a high elevation species endemic to the island (Z. murphyi) and a low elevation species endemic to the Solomon Islands (Z. kulambangrae). Field observations reveal large values of N for both species with Z. kulambangrae numbering at 114,781 ± 32,233 adults, and Z. murphyi numbering at 64,412 ± 15,324 adults. In contrast, genomic analyses reveal that N e was much lower than N, with Z. kulambangrae estimated at 694.5 and Z. murphyi at 796.1 individuals. Further, positive Tajima's D values for both species suggest that they have experienced a demographic contraction, providing a mechanism for low values of N e . Comparison of N and N e suggests that Z. kulambangrae and Z. murphyi are not at immediate threat of extinction but may be at genetic risk. Our results provide important baseline data for long-term monitoring of these island endemics, and argue for measuring both population size estimates to better gauge long-term population viability.

6.
Evolution ; 73(8): 1647-1662, 2019 08.
Article in English | MEDLINE | ID: mdl-31298415

ABSTRACT

Examining what happens when two closely related species come into secondary contact provides insight into the later stages of the speciation process. The Zosteropidae family of birds is one of the most rapidly speciating vertebrate lineages. Members of this family are highly vagile and geographically widespread, raising the question of how divergence can occur if populations can easily come into secondary contact. On the small island of Kolombangara, two closely related nonsister species of white-eyes, Zosterops kulambangrae and Zosterops murphyi, are distributed along an elevational gradient and come into secondary contact at mid-elevations. We captured 134 individuals of both species along two elevational transects. Using genotyping-by-sequencing data and a mitochondrial marker, we found no evidence of past hybridization events and strong persistence of species boundaries, even though the species have only been diverging for approximately 2 million years. We explore potential reproductive barriers that allow the two species to coexist in sympatry, including premating isolation based on divergence in plumage and song. We also conducted a literature review to determine the time it takes to evolve complete reproductive isolation in congeneric avian species/subspecies in secondary contact (restricted to cases where congeneric taxa are parapatric or have a hybrid zone), finding our study is one of the youngest examples of complete reproductive isolation studied in a genomic context reported in birds.


Subject(s)
Animal Distribution , Genetic Speciation , Reproductive Isolation , Songbirds/physiology , Animals , Melanesia , Songbirds/genetics , Species Specificity
7.
Ecol Evol ; 8(21): 10482-10488, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30464820

ABSTRACT

A common allometric pattern called Haller's Rule states that small species have relatively larger brains and eyes than larger species of the same taxonomic group. This pattern imposes drastic structural changes and energetic costs on small species to produce and maintain a disproportionate amount of nervous tissue. Indeed, several studies have shown the significant metabolic costs of having relatively larger brains; however, little is known about the structural constraints and adaptations required for housing these relatively larger brains and eyes. Because hummingbirds include the smallest birds, they are ideal for exploring how small species evolve morphological adaptations for housing relatively larger brain and eyes. We here present results from a comparative study of hummingbirds and show that the smallest species have the lowest levels of ossification, the most compact braincases, and relatively larger eye sockets, but lower eye/head proportion, than larger species. In contrast to Passerines, skull ossification in hummingbirds correlates with body and brain size but not with age. Correlation of these skull traits with body size might represent adaptations to facilitate housing relatively larger brain and eyes, rather than just heterochronic effects related to change in body size. These structural changes in skull traits allow small animals to accommodate disproportionately larger brains and eyes without further increasing overall head size.

8.
Microbiome ; 6(1): 167, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30231937

ABSTRACT

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Subject(s)
Bacteria/isolation & purification , Finches/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Biological Evolution , Climate , DNA, Bacterial/genetics , Ecuador , Feces/microbiology , Finches/classification , Finches/genetics , Gastrointestinal Tract/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons
9.
Mol Ecol ; 26(14): 3760-3774, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370617

ABSTRACT

Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina-sequenced ddRAD tags to identify genomewide patterns of differentiation in three recently diverged island populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. Populations of this species have diverged in plumage colour, and these differences in plumage colour, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations in MC1R and ASIP, both known pigmentation genes, to be associated with the difference in plumage colour between islands. Here, we show that background levels of genomic differentiation based on over 70,000 SNPs are extremely low between populations of distinct plumage colour, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on these SNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene flow between populations.


Subject(s)
Biological Evolution , Genetics, Population , Passeriformes/genetics , Animals , Feathers , Genome , Islands , Melanesia , Phylogeny , Pigmentation , Polymorphism, Single Nucleotide
10.
Mol Ecol ; 25(21): 5282-5295, 2016 11.
Article in English | MEDLINE | ID: mdl-27363308

ABSTRACT

Adaptive radiation unfolds as selection acts on the genetic variation underlying functional traits. The nature of this variation can be revealed by studying the tips of an ongoing adaptive radiation. We studied genomic variation at the tips of the Darwin's finch radiation; specifically focusing on polymorphism within, and variation among, three sympatric species of the genus Geospiza. Using restriction site-associated DNA (RAD-seq), we characterized 32 569 single-nucleotide polymorphisms (SNPs), from which 11 outlier SNPs for beak and body size were uncovered by a genomewide association study (GWAS). Principal component analysis revealed that these 11 SNPs formed four statistically linked groups. Stepwise regression then revealed that the first PC score, which included 6 of the 11 top SNPs, explained over 80% of the variation in beak size, suggesting that selection on these traits influences multiple correlated loci. The two SNPs most strongly associated with beak size were near genes associated with beak morphology across deeper branches of the radiation: delta-like 1 homologue (DLK1) and high-mobility group AT-hook 2 (HMGA2). Our results suggest that (i) key adaptive traits are associated with a small fraction of the genome (11 of 32 569 SNPs), (ii) SNPs linked to the candidate genes are dispersed throughout the genome (on several chromosomes), and (iii) micro- and macro-evolutionary variation (roots and tips of the radiation) involve some shared and some unique genomic regions.


Subject(s)
Biological Evolution , Finches/genetics , Animals , Beak , Body Size , Genetic Association Studies , Genetic Linkage , Genomics , Polymorphism, Single Nucleotide , Selection, Genetic
11.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27412275

ABSTRACT

The independent evolution of similar traits across multiple taxa provides some of the most compelling evidence of natural selection. Little is known, however, about the genetic basis of these convergent or parallel traits: are they mediated by identical or different mutations in the same genes, or unique mutations in different genes? Using a combination of candidate gene and reduced representation genomic sequencing approaches, we explore the genetic basis of and the evolutionary processes that mediate similar plumage colour shared by isolated populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. A genome-wide association study (GWAS) that explicitly controlled for population structure revealed that mutations in known pigmentation genes are the best predictors of parallel plumage colour. That is, entirely black or melanic birds from one small island share an amino acid substitution in the melanocortin-1 receptor (MC1R), whereas similarly melanic birds from another small island over 100 km away share an amino acid substitution in a predicted binding site of agouti signalling protein (ASIP). A third larger island, which separates the two melanic populations, is inhabited by birds with chestnut bellies that lack the melanic MC1R and ASIP allelic variants. Formal FST outlier tests corroborated the results of the GWAS and suggested that strong, directional selection drives the near fixation of the MC1R and ASIP variants across islands. Our results, therefore, suggest that selection acting on different mutations with large phenotypic effects can drive the evolution of parallel melanism, despite the relatively small population size on islands.


Subject(s)
Agouti Signaling Protein/genetics , Feathers/physiology , Pigmentation/genetics , Receptor, Melanocortin, Type 1/genetics , Songbirds/genetics , Amino Acid Substitution , Animals , Genetic Association Studies , Islands , Melanesia , Mutation
12.
Evolution ; 70(2): 257-69, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26787267

ABSTRACT

Hybridization and introgression can have important evolutionary consequences for speciation, especially during early stages of secondary contact when reproductive barriers may be weak. Few studies, however, have quantified dynamics of hybridization and introgression in systems in which recent natural dispersal across a geographic barrier resulted in secondary contact. We investigated patterns of hybridization and introgression between two Myzomela honeyeaters (M. tristrami and M. cardinalis) that recently achieved secondary contact on Makira in the Solomon Islands. Hybridization in this system was hypothesized to be a byproduct of conspecific mate scarcity during early stages of colonization. Our research, however, provides evidence of ongoing hybridization more than a century after secondary contact. Mitochondrial sequencing revealed strongly asymmetric reproductive isolation that is most likely driven by postzygotic incompatibilities rather than prezygotic behavioral barriers. Nuclear introgression was observed from the native species (M. tristrami) to the colonizing species (M. cardinalis). Nuclear introgression in the reverse direction is almost exclusively limited to birds that are phenotypically M. tristrami but possess M. cardinalis mitochondrial haplotypes, consistent with introgression of plumage-related alleles into the genomic background of M. cardinalis. These results provide unique insight into the dynamics and consequences of hybridization and introgression during early stages of secondary contact.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genotype , Hybridization, Genetic , Passeriformes/genetics , Reproductive Isolation , Animals , Genome, Mitochondrial , Haplotypes , Islands , Phenotype
13.
PLoS One ; 9(7): e101497, 2014.
Article in English | MEDLINE | ID: mdl-24987856

ABSTRACT

The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments.


Subject(s)
Ecosystem , Pigmentation , Poecilia/physiology , Predatory Behavior , Sexual Behavior, Animal , Animals , Cichlids/physiology , Female , Light , Male , Visual Perception
14.
Proc Biol Sci ; 280(1766): 20131065, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23864596

ABSTRACT

Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male-male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.


Subject(s)
Genetic Speciation , Mating Preference, Animal , Passeriformes/physiology , Animals , Feathers/anatomy & histology , Female , Male , Phenotype , Phylogeny
15.
Mol Ecol ; 21(6): 1477-86, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22320709

ABSTRACT

Understanding the mechanism(s) that favour cooperation among individuals competing for the same resources provides direct insights into the evolution of grouping behaviour. In a hybrid zone between golden-/yellow-collared (Manacus vitellinus) and white-collared (Manacus candei) manakins, males form aggregations composed of white and yellow males solely to attract females ('mixed leks'). Previous work shows that yellow males in these mixed leks experience a clear mating advantage over white males, resulting in the preferential introgression of yellow plumage allele(s) into the white species. However, the yellow male mating advantage only occurs in mixed leks with high frequencies of yellow males, and only a few of these males probably mate. Hence, it remains unclear why unsuccessful males join leks. Here, we used microsatellite markers to estimate pairwise relatedness among males within and between leks to test whether indirect genetic benefits of helping kin ('kin selection') can promote grouping. We found that yellow males are significantly more related to each other within than between leks, while relatedness among white males did not differ within and between leks. This suggests that yellow males may indirectly enhance their own reproductive success by preferentially lekking with relatives because yellow plumage is under positive frequency-dependent selection (positive FDS). Our results are consistent with the hypothesis that kin selection may promote grouping and facilitate positive FDS for yellow males, mediating the movement of yellow plumage across this hybrid zone.


Subject(s)
Biological Evolution , Feathers/physiology , Passeriformes/genetics , Selection, Genetic , Sexual Behavior, Animal , Animals , Color , Female , Male , Mating Preference, Animal , Passeriformes/physiology , Visual Perception
16.
BMC Evol Biol ; 10: 391, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21182755

ABSTRACT

BACKGROUND: Intense competition for access to females can lead to males exploiting different components of sexual selection, and result in the evolution of alternative mating strategies (AMSs). Males of Poecilia parae, a colour polymorphic fish, exhibit five distinct phenotypes: drab-coloured (immaculata), striped (parae), structural-coloured (blue) and carotenoid-based red and yellow morphs. Previous work indicates that immaculata males employ a sneaker strategy, whereas the red and yellow morphs exploit female preferences for carotenoid-based colours. Mating strategies favouring the maintenance of the other morphs remain to be determined. Here, we report the role of agonistic male-male interactions in influencing female mating preferences and male mating success, and in facilitating the evolution of AMSs. RESULTS: Our study reveals variation in aggressiveness among P. parae morphs during indirect and direct interactions with sexually receptive females. Two morphs, parae and yellow, use aggression to enhance their mating success (i.e., number of copulations) by 1) directly monopolizing access to females, and 2) modifying female preferences after winning agonistic encounters. Conversely, we found that the success of the drab-coloured immaculata morph, which specializes in a sneak copulation strategy, relies in its ability to circumvent both male aggression and female choice when facing all but yellow males. CONCLUSIONS: Strong directional selection is expected to deplete genetic variation, yet many species show striking genetically-based polymorphisms. Most studies evoke frequency dependent selection to explain the persistence of such variation. Consistent with a growing body of evidence, our findings suggest that a complex form of balancing selection may alternatively explain the evolution and maintenance of AMSs in a colour polymorphic fish. In particular, this study demonstrates that intrasexual competition results in phenotypically distinct males exhibiting clear differences in their levels of aggression to exclude potential sexual rivals. By being dominant, the more aggressive males are able to circumvent female mating preferences for attractive males, whereas another male type incorporates subordinate behaviours that allow them to circumvent male aggression and female mating preferences. Together, these and previous results indicate that exploiting different aspects of social interactions may allow males to evolve distinct mating strategies and thus the long term maintenance of polymorphisms within populations.


Subject(s)
Competitive Behavior , Mating Preference, Animal , Poecilia/physiology , Animals , Biological Evolution , Female , Male , Phenotype , Polymorphism, Genetic , Selection, Genetic
17.
Trends Genet ; 26(5): 231-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20381892

ABSTRACT

Animal coloration is a powerful model for studying the genetic mechanisms that determine phenotype. Genetic crosses of laboratory mice have provided extensive information about the patterns of inheritance and pleiotropic effects of loci involved in pigmentation. Recently, the study of pigmentation genes and their functions has extended into wild populations, providing additional evidence that pigment gene function is largely conserved across disparate vertebrate taxa and can influence adaptive coloration, often in predictable ways. These new and integrative studies, along with those using a genetic approach to understand color perception, raise some important questions. Most notably, how does selection shape both phenotypic and genetic variation, and how can we use this information to further understand the phenotypic diversity generated by evolutionary processes?


Subject(s)
Biological Evolution , Pigmentation/genetics , Animals , Color Perception/genetics
18.
Am Nat ; 174(2): 244-54, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19489704

ABSTRACT

Many studies demonstrate that differences in mating signals are used by incipient species in recognizing potential mates or sexual competitors (i.e., species recognition). Little is known, however, about the genetic changes responsible for these differences in mating signals. Populations of the Monarcha castaneiventris flycatcher vary in plumage color across the Solomon Islands, with a subspecies on Makira Island having chestnut bellies and blue-black upper parts (Monarcha castaneiventris megarhynchus) and a subspecies on neighboring satellite islands being entirely blue-black (melanic; Monarcha castaneiventris ugiensis). Here we show that a single nonsynonymous point mutation in the melanocortin-1 receptor (MC1R) gene is present in all melanic birds from one island (Santa Ana) but absent in all chestnut-bellied birds from Makira Island, implicating this mutation in causing melanism. Birds from a second satellite island (Ugi) do not show the same perfect association between this MC1R variant and plumage color, suggesting an alternative mechanism for melanism on this island. Finally, taxidermic mount presentation experiments in Makira (chestnut) and Santa Ana (melanic) suggest that the plumage difference mediates species recognition. Assuming that the signals used in species recognition are also used in mutual mate choice, our results indicate that a single amino acid substitution contributes to speciation.


Subject(s)
Amino Acid Substitution , Color , Feathers/anatomy & histology , Passeriformes/genetics , Receptor, Melanocortin, Type 1/genetics , Animal Communication , Animals , Female , Genetic Speciation , Haplotypes , Male , Mating Preference, Animal , Passeriformes/anatomy & histology , Receptor, Melanocortin, Type 1/chemistry , Species Specificity
19.
Proc Biol Sci ; 276(1671): 3229-37, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19553251

ABSTRACT

Whenever males can monopolize females and/or resources used by females, the opportunity for sexual selection will be great. The greater the variation among males in reproductive success, the greater the intensity of selection on less competitive males to gain matings through alternative tactics. In the yellow dung fly, Scathophaga stercoraria, males aggressively compete for access to receptive, gravid females on fresh dung. Larger males are better able to acquire mates and to complete copulation successfully and guard the female throughout oviposition. Here we demonstrate that when an alternative resource is present where females aggregate (i.e. apple pomace, where both sexes come to feed), smaller males will redirect their searching for females from dung to the new substrate. In addition, we identify a class of particularly small males on the alternative substrate that appears never to be present searching for females on or around dung. Smaller males were found to have a mating 'advantage' on pomace, in striking contrast to the pattern observed on dung, providing further support for the existence of an alternative male reproductive tactic in this species.


Subject(s)
Diptera/physiology , Sexual Behavior, Animal , Animals , Body Size , Diptera/anatomy & histology , Female , Male , Malus , Manure , Oviposition , Sex Characteristics
20.
Evolution ; 63(1): 153-64, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18803681

ABSTRACT

Changes in mating signals among populations contribute to species formation. Often these signals involve a suite of display traits of different sensory modalities ("multimodal signals"); however, few studies have tested the consequences of multimodal signal divergence with most focusing on only a single divergent signal or suite of signals of the same sensory modality. Populations of the chestnut-bellied flycatcher Monarcha castaneiventris vary in song and plumage color across the Solomon Islands. Using taxidermic mount presentation and song playback experiments, we tested for the relative roles of divergent song and color in homotypic ("same type") recognition between one pair of recently diverged sister taxa (the nominate chestnut-bellied M. c. castaneiventris and the white-capped M. c. richardsii forms). We found that both plumage and song type influenced the intensity of aggressive response by territory-owners, with plumage color playing a stronger role. These results indicate that differences in plumage and song are used in homotypic recognition, suggesting the importance of multimodal signal divergence in the evolution of premating reproductive isolation.


Subject(s)
Pigmentation , Songbirds/anatomy & histology , Songbirds/genetics , Vocalization, Animal , Animals , Female , Male , Melanesia , Sexual Behavior, Animal , Songbirds/classification , Songbirds/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...