Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(7): 2751-2760, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36745581

ABSTRACT

The remarkable efficiency and dynamics of micromachines in living organisms have inspired researchers to make artificial microrobots for targeted drug delivery, chemical sensing, cargo transport, and waste remediation applications. While several self- and directed-propulsion mechanisms have been discovered, the phoretic force has to be generated via either asymmetric surface functionalization or sophisticated geometric design of microrobots. As a result, many symmetric structures assembled from isotropic colloids are ruled out as viable microrobot possibilities. Here, we propose to utilize orientation control to actuate axially symmetric micro-objects with homogeneous surface properties, such as linear chains assembled from superparamagnetic microspheres. We demonstrate that the fore-and-aft symmetry of a horizontal chain can be broken by tilting it with an angle relative to the substrate under a two-dimensional magnetic field. A superimposed alternating current electric field propels the tilted chains. Our experiments and numerical simulation confirm that the electrohydrodynamic flow along the electrode is unbalanced surrounding the tilted chain, generating hydrodynamic stresses that both propel the chain and reorient it slightly toward the substrate. Our work takes advantage of external fields, where the magnetic field, as a driving wheel and brake, controls chain orientation and direction, while the electric field, as an engine, provides power for locomotion. Without the need to create complex-shaped micromotors with intricate building blocks, our work reveals a propulsion mechanism that breaks the symmetry of hydrodynamic flow by manipulating the orientation of a microscopic object.

2.
Mol Cancer Ther ; 17(9): 2049-2059, 2018 09.
Article in English | MEDLINE | ID: mdl-29970482

ABSTRACT

Eph proteins have emerged as critical drivers affecting tumor growth and progression in human malignancies. Our The Cancer Genome Atlas (TCGA) data analysis showed that EphB3, a receptor tyrosine kinase, is frequently coamplified with PIK3CA in head and neck squamous cell carcinoma (HNSCC). We therefore hypothesized that EphB3 amplification plays a protumorigenic role in HNSCC and that EphB3 and PIK3CA are cooperating oncogenes that contribute toward its pathogenesis. This hypothesis was not experimentally supported, because EphB3 knockdown failed to alter HNSCC tumor cell growth in vitro or in vivo with an orthotopic model. However, responsiveness of EphB3 knockdown tumors to the PI3K inhibitor, BKM120, was significantly decreased in terms of both tumor growth delay and survival. This is correlated with an increase in prosurvival proteins, S6 and BcL-XL, in the EphB3 shRNA tumors treated with BKM120 compared with controls. We further observed that EphB3 knockdown resulted in increased migration in vitro and increased EMT gene signature in vivo To explain these results, we examined EphB3 phosphorylation levels in HNSCC at baseline. Although total EphB3 levels were high, we found low phospho-EphB3 levels in HNSCCs. Forced EphB3 phosphorylation with an ephrin-B2-Fc fusion protein resulted in decreased HNSCC migration and cell growth, and enhanced response to BKM120 in vitro These data collectively indicate that progression of HNSCC selects for low/inhibited EphB3 activity to enhance their survival and migratory abilities and decrease response to PI3K signaling. Therefore, strategies focused on activating EphB3 might be helpful to inhibit tumor growth and enhance sensitivity to PI3K inhibitors in HNSCC. Mol Cancer Ther; 17(9); 2049-59. ©2018 AACR.


Subject(s)
Aminopyridines/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Movement/drug effects , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Head and Neck Neoplasms/drug therapy , Morpholines/pharmacology , Receptor, EphB3/genetics , Xenograft Model Antitumor Assays/methods , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Movement/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Humans , Kaplan-Meier Estimate , Mice, Nude , RNA Interference , Receptor, EphB3/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Burden/drug effects , Tumor Burden/genetics
3.
Clin Cancer Res ; 24(21): 5368-5380, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30042205

ABSTRACT

Purpose: Radiotherapy (RT) can transform the immune landscape and render poorly immunogenic tumors sensitive to PD-L1 inhibition. Here, we established that the response to combined RT and PD-L1 inhibition is transient and investigated mechanisms of resistance.Experimental Design: Mechanisms of resistance to RT and PD-L1 blockade were investigated in orthotopic murine head and neck squamous cell carcinoma (HNSCC) tumors using mass cytometry and whole-genome sequencing. Mice were treated with anti-PD-L1 or anti-TIM-3 alone and in combination with and without RT. Tumor growth and survival were assessed. Flow cytometry was used to assess phenotypic and functional changes in intratumoral T-cell populations. Depletion of regulatory T cells (Treg) was performed using anti-CD25 antibody.Results: We show that the immune checkpoint receptor, TIM-3, is upregulated on CD8 T cells and Tregs in tumors treated with RT and PD-L1 blockade. Treatment with anti-TIM-3 concurrently with anti-PD-L1 and RT led to significant tumor growth delay, enhanced T-cell cytotoxicity, decreased Tregs, and improved survival in orthotopic models of HNSCC. Despite this treatment combination, the response was not durable, and analysis of relapsed tumors revealed resurgence of Tregs. Targeted Treg depletion, however, restored antitumor immunity in mice treated with RT and dual immune checkpoint blockade and resulted in tumor rejection and induction of immunologic memory.Conclusions: These data reveal multiple layers of immune regulation that can promote tumorigenesis and the therapeutic potential of sequential targeting to overcome tumor resistance mechanisms. We propose that targeted Treg inhibitors may be critical for achieving durable tumor response with combined radiotherapy and immunotherapy. Clin Cancer Res; 24(21); 5368-80. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 2/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Radiation Tolerance , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Line, Tumor , Combined Modality Therapy , Cytotoxicity, Immunologic , Disease Models, Animal , Humans , Immunomodulation/drug effects , Immunomodulation/genetics , Mice , Radiotherapy , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 24(18): 4539-4550, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29848571

ABSTRACT

Purpose: The clinical success of targeted therapies such as cetuximab and radiotherapy (RT) is hampered by the low response rates and development of therapeutic resistance. In the current study, we investigated the involvement of EphB4-ephrin-B2 protumorigenic signaling in mediating resistance to EGFR inhibition and RT in head and neck cancers.Experimental Design: We used patient-derived xenograft (PDX) models of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines to test our hypothesis. Tumor tissues were subjected to PhosphoRTK array, and Western blotting to detect changes in EphB4-ephrin-B2 targets. mRNA sequencing and microarray data analysis were performed on PDX tumors and HNSCC cell lines, respectively, to determine differences in gene expression of molecules involved in tumor cell growth, proliferation, and survival pathways. Effects on cell growth were determined by MTT assay on HNSCC cells downregulated for EphB4/ephrin-B2 expression, with and without EGFR inhibitor and radiation.Results: Our data from locally advanced HNSCC patients treated with standard-of-care definitive chemo-RT show elevated EphB4 and ephrin-B2 levels after failure of treatment. We observed significant response toward cetuximab and RT following EphB4-ephrin-B2 inhibition, resulting in improved survival in tumor-bearing mice. Tumor growth inhibition was accompanied by a decrease in the levels of proliferation and prosurvival molecules and increased apoptosis.Conclusions: Our findings underscore the importance of adopting rational drug combinations to enhance therapeutic effect. Our study documenting enhanced response of HNSCC to cetuximab-RT with EphB4-ephrin-B2 blockade has the potential to translate into the clinic to benefit this patient population. Clin Cancer Res; 24(18); 4539-50. ©2018 AACR.


Subject(s)
Ephrin-B2/genetics , Receptor, EphB4/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cetuximab/pharmacology , Combined Modality Therapy , Ephrin-B2/antagonists & inhibitors , Humans , Mice , Receptor, EphB4/antagonists & inhibitors , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...