Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Science ; 384(6696): 622-623, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723099

ABSTRACT

New analyses show that trait variability links evolution across vastly different timescales.


Subject(s)
Biological Evolution , Genetic Variation , Animals , Humans , Phenotype
2.
Elife ; 122023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059790

ABSTRACT

Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades - SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II - diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8-0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45-0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.


Subject(s)
Archaea , Cyanobacteria , Archaea/genetics , Phylogeny , Oxygen , Oceans and Seas , Seawater/microbiology
3.
Nat Ecol Evol ; 7(10): 1729-1739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37652997

ABSTRACT

Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.

4.
Evolution ; 76(12): 2975-2985, 2022 12.
Article in English | MEDLINE | ID: mdl-36005286

ABSTRACT

A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.


Subject(s)
Biological Evolution , Primates , Animals , Primates/genetics , Molar/anatomy & histology , Phenotype , Models, Biological , Phylogeny
5.
Ecology ; 102(7): e03369, 2021 07.
Article in English | MEDLINE | ID: mdl-33864262

ABSTRACT

Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth's complex environments.


Subject(s)
Locomotion , Mammals , Animals , Biomechanical Phenomena , Body Size
6.
Evolution ; 75(5): 1097-1105, 2021 05.
Article in English | MEDLINE | ID: mdl-33788258

ABSTRACT

Phylogenetic comparative methods are often used to test functional relationships between traits. However, million-year macroevolutionary observational datasets cannot definitively prove causal links between traits-correlation does not equal causation and experimental manipulation over such timescales is impossible. Although this caveat is widely understood, it is less appreciated that different phylogenetic approaches imply different causal assumptions about the functional relationships of traits. To make meaningful inferences, it is critical that our statistical methods make biologically reasonable assumptions. Here we illustrate the importance of causal reasoning in comparative biology by examining a recent study by Avaria-Llautureo et al (2019). that tested for the evolutionary coupling of metabolic rate and body temperature across endotherms and found that these traits were unlinked through evolutionary time and that body temperatures were, on average, higher in the early Cenozoic than they are today. We argue that the causal assumptions embedded into their models made it impossible for them to test the relevant functional and evolutionary hypotheses. We reanalyze their data using more biologically appropriate models and find support for the exact opposite conclusions, corroborating previous evidence from physiology and paleontology. We highlight the vital need for causal thinking, even when experiments are impossible.


Subject(s)
Basal Metabolism/physiology , Body Temperature/physiology , Phylogeny , Animals , Biological Evolution , Birds/physiology , Mammals/physiology
7.
Evolution ; 74(5): 979-991, 2020 05.
Article in English | MEDLINE | ID: mdl-32190909

ABSTRACT

Macroclimatic niches are indirect and potentially inadequate predictors of the realized environmental conditions that many species experience. Consequently, analyses of niche evolution based on macroclimatic data alone may incompletely represent the evolutionary dynamics of species niches. Yet, understanding how an organisms' climatic (Grinnellian) niche responds to changing macroclimatic conditions is of vital importance for predicting their potential response to global change. In this study, we integrate microclimatic and macroclimatic data across 26 species of plethodontid salamanders to portray the relationship between microclimatic niche evolution in response to changing macroclimate. We demonstrate stronger phylogenetic signal in microclimatic niche variables than at the macroclimatic scale. Even so, we find that the microclimatic niche tracks climatic changes at the macroscale, but with a phylogenetic lag at million-year timescales. We hypothesize that behavioral tracking of the microclimatic niche over space and phenology generates the lag: salamanders preferentially select microclimates similar to their ancestral conditions rather than adapting with changes in physiology. We demonstrate that macroclimatic variables are weak predictors of niche evolution and that incorporating spatial scale into analyses of niche evolution is critical for predicting responses to climate change.


Subject(s)
Biological Evolution , Climate Change , Ecosystem , Microclimate , Phylogeny , Urodela/physiology , Animals , North Carolina , Ohio , Tennessee , Virginia , West Virginia
8.
Syst Biol ; 67(6): 1091-1109, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29701838

ABSTRACT

As a result of the process of descent with modification, closely related species tend to be similar to one another in a myriad different ways. In statistical terms, this means that traits measured on one species will not be independent of traits measured on others. Since their introduction in the 1980s, phylogenetic comparative methods (PCMs) have been framed as a solution to this problem. In this article, we argue that this way of thinking about PCMs is deeply misleading. Not only has this sowed widespread confusion in the literature about what PCMs are doing but has led us to develop methods that are susceptible to the very thing we sought to build defenses against-unreplicated evolutionary events. Through three Case Studies, we demonstrate that the susceptibility to singular events is indeed a recurring problem in comparative biology that links several seemingly unrelated controversies. In each Case Study, we propose a potential solution to the problem. While the details of our proposed solutions differ, they share a common theme: unifying hypothesis testing with data-driven approaches (which we term "phylogenetic natural history") to disentangle the impact of singular evolutionary events from that of the factors we are investigating. More broadly, we argue that our field has, at times, been sloppy when weighing evidence in support of causal hypotheses. We suggest that one way to refine our inferences is to re-imagine phylogenies as probabilistic graphical models; adopting this way of thinking will help clarify precisely what we are testing and what evidence supports our claims.


Subject(s)
Classification/methods , Phylogeny
9.
New Phytol ; 218(4): 1697-1709, 2018 06.
Article in English | MEDLINE | ID: mdl-29603243

ABSTRACT

Nonlinear relationships between species and their environments are believed common in ecology and evolution, including during angiosperms' rise to dominance. Early angiosperms are thought of as woody evergreens restricted to warm, wet habitats. They have since expanded into numerous cold and dry places. This expansion may have included transitions across important environmental thresholds. To understand linear and nonlinear relationships between angiosperm structure and biogeographic distributions, we integrated large datasets of growth habits, conduit sizes, leaf phenologies, evolutionary histories, and environmental limits. We consider current-day patterns and develop a new evolutionary model to investigate processes that created them. The macroecological pattern was clear: herbs had lower minimum temperature and precipitation limits. In woody species, conduit sizes were smaller in evergreens and related to species' minimum temperatures. Across evolutionary timescales, our new modeling approach found conduit sizes in deciduous species decreased linearly with minimum temperature limits. By contrast, evergreen species had a sigmoidal relationship with minimum temperature limits and an inflection overlapping freezing. These results suggest freezing represented an important threshold for evergreen but not deciduous woody angiosperms. Global success of angiosperms appears tied to a small set of alternative solutions when faced with a novel environmental threshold.


Subject(s)
Magnoliopsida/classification , Phylogeography , Bayes Theorem , Biological Evolution , Ecosystem , Models, Theoretical , Plant Leaves/physiology , Quantitative Trait, Heritable
10.
Evolution ; 71(10): 2344-2358, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28745397

ABSTRACT

Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities.


Subject(s)
Evolution, Molecular , Lizards/genetics , Selection, Genetic , Toes/physiology , Animals , Lizards/anatomy & histology , Lizards/physiology , Models, Genetic , Toes/anatomy & histology
11.
Am Nat ; 190(2): 185-199, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28731792

ABSTRACT

Metabolism is the link between ecology and physiology-it dictates the flow of energy through individuals and across trophic levels. Much of the predictive power of metabolic theories of ecology derives from the scaling relationship between organismal size and metabolic rate. There is growing evidence that this scaling relationship is not universal, but we have little knowledge of how it has evolved over macroevolutionary time. Here we develop a novel phylogenetic comparative method to investigate how often and in which clades the macroevolutionary dynamics of the metabolic scaling have changed. We find strong evidence that the metabolic scaling relationship has shifted multiple times across the vertebrate phylogeny. However, shifts are rare and otherwise strongly constrained. Importantly, both the estimated slope and intercept values vary widely across regimes, with slopes that spanned across theoretically predicted values such as 2/3 or 3/4. We further tested whether traits such as ecto-/endothermy, genome size, and quadratic curvature with body mass (i.e., energetic constraints at extreme body sizes) could explain the observed pattern of shifts. Though these factors help explain some of the variation in scaling parameters, much of the remaining variation remains elusive. Our results lay the groundwork for further exploration of the evolutionary and ecological drivers of major transitions in metabolic strategy and for harnessing this information to improve macroecological predictions.


Subject(s)
Body Size , Animals , Biological Evolution , Ecology , Phylogeny , Vertebrates
12.
PLoS One ; 11(9): e0162539, 2016.
Article in English | MEDLINE | ID: mdl-27649395

ABSTRACT

Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record-phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth's history have shaped-and been shaped by-evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and "Snowball Earth" glaciations and is associated with decrease in the evolutionary rates around 1.8-1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes-particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth's history.


Subject(s)
Cyanobacteria/genetics , Ecology , Evolution, Molecular , Genome, Bacterial/genetics , Genomics/methods , Phylogeny , Amino Acid Sequence , Base Sequence , Cyanobacteria/classification , Cyanobacteria/growth & development , Earth, Planet , Ecosystem , Fresh Water/microbiology , Models, Genetic , Oxygen/metabolism , Phenotype , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity , Time Factors
13.
Syst Biol ; 64(4): 677-89, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25841167

ABSTRACT

Most existing methods for modeling trait evolution are univariate, although researchers are often interested in investigating evolutionary patterns and processes across multiple traits. Principal components analysis (PCA) is commonly used to reduce the dimensionality of multivariate data so that univariate trait models can be fit to individual principal components. The problem with using standard PCA on phylogenetically structured data has been previously pointed out yet it continues to be widely used in the literature. Here we demonstrate precisely how using standard PCA can mislead inferences: The first few principal components of traits evolved under constant-rate multivariate Brownian motion will appear to have evolved via an "early burst" process. A phylogenetic PCA (pPCA) has been proprosed to alleviate these issues. However, when the true model of trait evolution deviates from the model assumed in the calculation of the pPCA axes, we find that the use of pPCA suffers from similar artifacts as standard PCA. We show that data sets with high effective dimensionality are particularly likely to lead to erroneous inferences. Ultimately, all of the problems we report stem from the same underlying issue--by considering only the first few principal components as univariate traits, we are effectively examining a biased sample of a multivariate pattern. These results highlight the need for truly multivariate phylogenetic comparative methods. As these methods are still being developed, we discuss potential alternative strategies for using and interpreting models fit to univariate axes of multivariate data.


Subject(s)
Classification/methods , Phylogeny , Animals , Cats/anatomy & histology , Cats/classification , Computer Simulation , Lizards/anatomy & histology , Lizards/classification , Principal Component Analysis
14.
Syst Biol ; 63(6): 902-18, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25077513

ABSTRACT

Our understanding of macroevolutionary patterns of adaptive evolution has greatly increased with the advent of large-scale phylogenetic comparative methods. Widely used Ornstein-Uhlenbeck (OU) models can describe an adaptive process of divergence and selection. However, inference of the dynamics of adaptive landscapes from comparative data is complicated by interpretational difficulties, lack of identifiability among parameter values and the common requirement that adaptive hypotheses must be assigned a priori. Here, we develop a reversible-jump Bayesian method of fitting multi-optima OU models to phylogenetic comparative data that estimates the placement and magnitude of adaptive shifts directly from the data. We show how biologically informed hypotheses can be tested against this inferred posterior of shift locations using Bayes Factors to establish whether our a priori models adequately describe the dynamics of adaptive peak shifts. Furthermore, we show how the inclusion of informative priors can be used to restrict models to biologically realistic parameter space and test particular biological interpretations of evolutionary models. We argue that Bayesian model fitting of OU models to comparative data provides a framework for integrating of multiple sources of biological data-such as microevolutionary estimates of selection parameters and paleontological timeseries-allowing inference of adaptive landscape dynamics with explicit, process-based biological interpretations.


Subject(s)
Classification/methods , Models, Biological , Phylogeny , Animals , Bayes Theorem , Computer Simulation , Data Interpretation, Statistical , Turtles/anatomy & histology , Turtles/classification
15.
Bioinformatics ; 30(15): 2216-8, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24728855

ABSTRACT

SUMMARY: Phylogenetic comparative methods are essential for addressing evolutionary hypotheses with interspecific data. The scale and scope of such data have increased dramatically in the past few years. Many existing approaches are either computationally infeasible or inappropriate for data of this size. To address both of these problems, we present geiger v2.0, a complete overhaul of the popular R package geiger. We have reimplemented existing methods with more efficient algorithms and have developed several new approaches for accomodating heterogeneous models and data types. AVAILABILITY AND IMPLEMENTATION: This R package is available on the CRAN repository http://cran.r-project.org/web/packages/geiger/. All source code is also available on github http://github.com/mwpennell/geiger-v2. geiger v2.0 depends on the ape package. CONTACT: mwpennell@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biological Evolution , Computational Biology/methods , Models, Biological , Phylogeny , Programming Languages , Algorithms , Bayes Theorem , Likelihood Functions
17.
Trends Ecol Evol ; 29(1): 23-32, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23978567

ABSTRACT

The long-controversial theory of punctuated equilibrium (PE) asserts that speciation causes rapid evolution against a backdrop of stasis. PE is currently undergoing a resurgence driven by new developments in statistical methods. However, we argue that PE is actually a tangle of four unnecessarily conflated questions: (i) is evolution gradualistic or pulsed? (ii) does trait evolution occur mainly at speciation or within a lineage? (iii) are changes at speciation adaptive or neutral? and (iv) how important is species selection in shaping patterns of diversity? We discuss progress towards answering these four questions but argue that combining these conceptually distinct ideas under the single framework of PE is distracting and confusing, and more likely to hinder progress than to spur it.


Subject(s)
Biological Evolution , Genetic Speciation , Models, Genetic , Evolution, Molecular , Phylogeny , Terminology as Topic
18.
Proc Natl Acad Sci U S A ; 108(38): 15908-13, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21873251

ABSTRACT

We lack a comprehensive understanding of evolutionary pattern and process because short-term and long-term data have rarely been combined into a single analytical framework. Here we test alternative models of phenotypic evolution using a dataset of unprecedented size and temporal span (over 8,000 data points). The data are body-size measurements taken from historical studies, the fossil record, and among-species comparative data representing mammals, squamates, and birds. By analyzing this large dataset, we identify stochastic models that can explain evolutionary patterns on both short and long timescales and reveal a remarkably consistent pattern in the timing of divergence across taxonomic groups. Even though rapid, short-term evolution often occurs in intervals shorter than 1 Myr, the changes are constrained and do not accumulate over time. Over longer intervals (1-360 Myr), this pattern of bounded evolution yields to a pattern of increasing divergence with time. The best-fitting model to explain this pattern is a model that combines rare but substantial bursts of phenotypic change with bounded fluctuations on shorter timescales. We suggest that these rare bursts reflect permanent changes in adaptive zones, whereas the short-term fluctuations represent local variations in niche optima due to restricted environmental variation within a stable adaptive zone.


Subject(s)
Biological Evolution , Body Size/physiology , Fossils , Animals , Birds/classification , Birds/genetics , Body Size/genetics , Genetic Variation , Linear Models , Lizards/classification , Lizards/genetics , Mammals/classification , Mammals/genetics , Models, Genetic , Models, Statistical , Phylogeny , Stochastic Processes , Time Factors
19.
Evolution ; 63(3): 583-94, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19087180

ABSTRACT

Quantitative genetic models of sexual selection have generally failed to provide a direct connection to speciation and to explore the consequences of finite population size. The connection to speciation has been indirect because the models have treated only the evolution of male and female traits and have stopped short of modeling the evolution of sexual isolation. In this article we extend Lande's (1981) model of sexual selection to quantify predictions about the evolution of sexual isolation and speciation. Our results, based on computer simulations, support and extend Lande's claim that drift along a line of equilibria can rapidly lead to sexual isolation and speciation. Furthermore, we show that rapid speciation can occur by drift in populations of appreciable size (N(e) >or= 1000). These results are in sharp contrast to the opinion of many researchers and textbook writers who have argued that drift does not play an important role in speciation. We argue that drift may be a powerful amplifier of speciation under a wide variety of modeling assumptions, even when selection acts directly on female mating preferences.


Subject(s)
Genetic Drift , Genetic Speciation , Models, Genetic , Animals , Computer Simulation , Female , Genetics, Population , Male , Mating Preference, Animal , Population Density , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...