Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 36(12): 2461-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26536251

ABSTRACT

Tissue oxygen saturation (StO2) is a useful parameter for medical applications. A spectroscopic method has been developed to detect pathologic tissues, due to a lack of normal blood circulation, by measuring StO2. In this study, human blood samples with different levels of oxygen saturation have been prepared and spectra were acquired using an optical fiber probe to investigate the correlation between the oxygen saturation levels and the spectra. A linear correlation between the oxygen saturation and ratio of the intensities (760 nm to 790 nm) of the spectra acquired from blood samples has been found. In a validation study, oxygen saturations of the blood samples were estimated from the spectroscopic measurements with an error of 2.9%. It has also been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Spectra were acquired from the forearms of 30 healthy volunteers to estimate StO2 prior to, at the beginning of, after 2 min, and at the release of total vascular occlusion. The average StO2 of a forearm before and after the two minutes occlusion was significantly different. The results suggested that optical reflectance spectroscopy is a sensitive method to estimate the StO2 levels of human tissue. The technique developed to measure StO2 has potential to detect ischemia in real time.


Subject(s)
Blood Chemical Analysis/methods , Oxygen Consumption , Spectrum Analysis/methods , Blood Chemical Analysis/instrumentation , Healthy Volunteers , Humans , Optical Fibers , Spectrum Analysis/instrumentation
2.
Biorheology ; 46(3): 239-49, 2009.
Article in English | MEDLINE | ID: mdl-19581730

ABSTRACT

The electrical properties of red blood cell (RBC) suspensions are influenced by flow conditions, and prior studies indicate that electrical properties may reflect the kinetics of RBC aggregation. Changes of conductance and capacitance were monitored and had a time course resembling a "syllectogram" (i.e., temporal change of light reflectance from an RBC suspension after sudden cessation of flow). In the present study, both AC electrical conductance (EC) across and light transmission (LT) through a 1 mm ID glass tube were recorded simultaneously after a sudden stoppage of flow for RBC at various hematocrits in plasma or in isotonic saline (PBS). Preliminary results indicate that EC and LT signals for RBC in plasma have similar time courses, both increasing after an initial decrement of a few seconds duration. Aggregation indexes and aggregation half times calculated using LT and EC showed a similar dependence on hematocrits between 30-50%. Interestingly, RBC in PBS also exhibited a syllectogram time course for conductance, whereas LT continued to decrease after an initial decline reflecting RBC shape recovery. These results suggest that electrical conductance in aggregating and non-aggregating suspensions may be sensitive to phenomena other than RBC aggregation.


Subject(s)
Electric Conductivity , Erythrocyte Aggregation/physiology , Adult , Conductometry/methods , Hematocrit , Humans , Light , Male , Middle Aged , Scattering, Radiation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...