Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 177: 117039, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955085

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.


Subject(s)
Disease Progression , Hepatocyte Growth Factor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Microenvironment , Animals , Hepatocyte Growth Factor/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Inflammation/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Monocytes/drug effects , Monocytes/metabolism , Monocytes/pathology
2.
Biomed Pharmacother ; 164: 114895, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37224758

ABSTRACT

BACKGROUND AND PURPOSE: Glucocorticoids (GCs) are the main treatment for autoimmune and inflammatory disorders and are also used as immunosuppressive therapy for patients with organ transplantation. However, these treatments have several side effects, including metabolic disorders. Indeed, cortico-therapy may induce insulin resistance, glucose intolerance, disrupted insulin and glucagon secretion, excessive gluconeogenesis, leading to diabetes in susceptible individuals. Recently, lithium has been shown to alleviate deleterious effects of GCs in various diseased conditions. EXPERIMENTAL APPROACH: In this study, using two rat models of GC-induced metabolic disorders, we investigated the effects of Lithium Chloride (LiCl) in the mitigation of deleterious effects of GCs. Rats were treated either with corticosterone or dexamethasone, and with or without LiCl. Animals were then assessed for glucose tolerance, insulin sensitivity, in vivo and ex vivo glucose-induced insulin secretion and hepatic gluconeogenesis. KEY RESULTS: We showed that in rats chronically treated with corticosterone, lithium treatment markedly reduced insulin resistance. In addition, in rats treated with dexamethasone, lithium administration improved glucose tolerance, associated with enhanced insulin secretion in vivo. Moreover, liver gluconeogenesis was reduced upon LiCl treatment. The improvement of insulin secretion in vivo appeared to be due to an indirect regulation of ß cell function, since the ex vivo assessment of insulin secretion and ß cell mass in islets from animals treated with LiCl revealed no difference compared to untreated animals. CONCLUSION AND IMPLICATIONS: Collectively, our data provide evidences for the beneficial effects of lithium to mitigate the adverse metabolic effects of chronic cortico-therapy.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Rats , Animals , Insulin Resistance/physiology , Lithium/pharmacology , Corticosterone , Blood Glucose/metabolism , Glucocorticoids , Diabetes Mellitus/chemically induced , Insulin/metabolism , Glucose/metabolism , Gluconeogenesis , Dexamethasone/adverse effects , Lithium Compounds
3.
Blood Adv ; 5(2): 513-526, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33496749

ABSTRACT

Resistance to chemotherapy, a major therapeutic challenge in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), can be driven by interactions between leukemic cells and the microenvironment that promote survival of leukemic cells. The bone marrow, an important leukemia niche, has low oxygen partial pressures that highly participate in the regulation of normal hematopoiesis. Here we show that hypoxia inhibits T-ALL cell growth by slowing down cell cycle progression, decreasing mitochondria activity, and increasing glycolysis, making them less sensitive to antileukemic drugs and preserving their ability to initiate leukemia after treatment. Activation of the mammalian target of rapamycin (mTOR) was diminished in hypoxic leukemic cells, and treatment of T-ALL with the mTOR inhibitor rapamycin in normoxia mimicked the hypoxia effects, namely decreased cell growth and increased quiescence and drug resistance. Knocking down (KD) hypoxia-induced factor 1α (HIF-1α), a key regulator of the cellular response to hypoxia, antagonized the effects observed in hypoxic T-ALL and restored chemosensitivity. HIF-1α KD also restored mTOR activation in low O2 concentrations, and inhibiting mTOR in HIF1α KD T-ALL protected leukemic cells from chemotherapy. Thus, hypoxic niches play a protective role of T-ALL during treatments. Inhibition of HIF-1α and activation of the mTORC1 pathway may help suppress the drug resistance of T-ALL in hypoxic niches.


Subject(s)
Pharmaceutical Preparations , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Drug Resistance, Neoplasm , Humans , Hypoxia , Mechanistic Target of Rapamycin Complex 1 , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tumor Microenvironment
4.
Mol Oncol ; 15(5): 1412-1431, 2021 05.
Article in English | MEDLINE | ID: mdl-33314742

ABSTRACT

The cellular receptor Notch1 is a central regulator of T-cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T-cell acute lymphoblastic leukemia (T-ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T-ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti-Notch therapies in T-ALL models. In this work, we report that Notch1 upregulation in T-ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1-driven T-ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1-induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1-driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1-driven leukemia.


Subject(s)
Glutamate-Ammonia Ligase/genetics , Glutamine/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Cell Line, Tumor , Down-Regulation/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Glutamate-Ammonia Ligase/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred NOD , Mice, Transgenic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/genetics
5.
Int J Radiat Oncol Biol Phys ; 109(3): 819-829, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33075474

ABSTRACT

PURPOSE: Ultra-high-dose-rate FLASH radiation therapy has been shown to minimize side effects of irradiation in various organs while keeping antitumor efficacy. This property, called the FLASH effect, has caused enthusiasm in the radiation oncology community because it opens opportunities for safe dose escalation and improved radiation therapy outcome. Here, we investigated the impact of ultra-high-dose-rate FLASH versus conventional-dose-rate (CONV) total body irradiation (TBI) on humanized models of T-cell acute lymphoblastic leukemia (T-ALL) and normal human hematopoiesis. METHODS AND MATERIALS: We optimized the geometry of irradiation to ensure reproducible and homogeneous procedures using eRT6/Oriatron. Three T-ALL patient-derived xenografts and hematopoietic stem/progenitor cells (HSPCs) and CD34+ cells isolated from umbilical cord blood were transplanted into immunocompromised mice, together or separately. After reconstitution, mice received 4 Gy FLASH and CONV-TBI, and tumor growth and normal hematopoiesis were studied. A retrospective study of clinical and gene-profiling data previously obtained on the 3 T-ALL patient-derived xenografts was performed. RESULTS: FLASH-TBI was more efficient than CONV-TBI in controlling the propagation of 2 cases of T-ALL, whereas the third case of T-ALL was more responsive to CONV-TBI. The 2 FLASH-sensitive cases of T-ALL had similar genetic abnormalities, and a putative susceptibility imprint to FLASH-RT was found. In addition, FLASH-TBI was able to preserve some HSPC/CD34+ cell potential. Interestingly, when HSPC and T-ALL were present in the same animals, FLASH-TBI could control tumor development in most (3 of 4) of the secondary grafted animals, whereas among the mice receiving CONV-TBI, treated cells died with high leukemia infiltration. CONCLUSIONS: Compared with CONV-TBI, FLASH-TBI reduced functional damage to human blood stem cells and had a therapeutic effect on human T-ALL with a common genetic and genomic profile. The validity of the defined susceptibility imprint needs to be investigated further; however, to our knowledge, the present findings are the first to show benefits of FLASH-TBI on human hematopoiesis and leukemia treatment.


Subject(s)
Hematopoiesis/radiation effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/radiation effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/radiotherapy , Whole-Body Irradiation/methods , Animals , Genetic Profile , Humans , Immunocompromised Host , Mice , Organs at Risk/radiation effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Radiation Injuries/prevention & control , Radiation Tolerance , Radiotherapy Dosage , Reproducibility of Results , Xenograft Model Antitumor Assays
6.
Blood ; 136(6): 698-714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32350520

ABSTRACT

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Neoplasm Proteins/physiology , Transcription Factors/physiology , Transcriptome , Adult , Animals , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Erythroblasts/metabolism , Erythropoiesis/genetics , Female , GATA1 Transcription Factor/deficiency , GATA1 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , RNA-Seq , Radiation Chimera , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/physiology , Exome Sequencing , Young Adult
7.
Cell Rep ; 29(8): 2307-2320.e6, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747603

ABSTRACT

Hypoxia plays a major role in the physiology of hematopoietic and immune niches. Important clues from works in mouse have paved the way to investigate the role of low O2 levels in hematopoiesis. However, whether hypoxia impacts the initial steps of human lymphopoiesis remains unexplored. Here, we show that hypoxia regulates cellular and metabolic profiles of umbilical cord blood (UCB)-derived hematopoietic progenitor cells. Hypoxia more specifically enhances in vitro lymphoid differentiation potentials of lymphoid-primed multipotent progenitors (LMPPs) and pro-T/natural killer (NK) cells and in vivo B cell potential of LMPPs. In accordance, hypoxia exacerbates the lymphoid gene expression profile through hypoxia-inducible factor (HIF)-1α (for LMPPs) and HIF-2α (for pro-T/NK). Moreover, loss of HIF-1/2α expression seriously impedes NK and B cell production from LMPPs and pro-T/NK. Our study describes how hypoxia contributes to the lymphoid development of human progenitors and reveals the implication of the HIF pathway in LMPPs and pro-T/NK-cell lymphoid identities.


Subject(s)
Cell Hypoxia/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Hypoxia/genetics , Cells, Cultured , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Lymphopoiesis/genetics , Lymphopoiesis/physiology , Oxygen/metabolism
8.
Adv Biol Regul ; 74: 100640, 2019 12.
Article in English | MEDLINE | ID: mdl-31378700

ABSTRACT

T-cell acute leukemia is a hematologic malignancy that results from the progressive acquisition of genomic abnormalities in T-cell progenitors/precursors. T-ALL is commonly thought to originate from the thymus albeit recent literature describes the possible acquisition of the first oncogenic hits in hematopoietic progenitor cells of the bone marrow (BM). The journey of T-ALL from its arising to full blown expansion meets different microenvironments, including the BM in which leukemic cells settle down early after the disease spreading. We take advantage of recent literature to give an overview of important cells and factors that participate in T-ALL, especially in the BM, arguing in favor of a home marrow niche for this rare leukemia.


Subject(s)
Bone Marrow/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Microenvironment/immunology , Animals , Bone Marrow/pathology , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
9.
Oncogene ; 38(48): 7357-7365, 2019 11.
Article in English | MEDLINE | ID: mdl-31417180

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by an accumulation of immature T cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk patients. Interleukin-7 (IL-7) modulates the survival and proliferation of normal and malignant T cells. Targeting the IL-7 signaling pathway is thus a potentially effective therapeutic strategy. To achieve such aim, it is essential to first understand how the IL-7 signaling pathway is activated. Although IL-7 production has been observed from multiple stromal tissues, T-ALL autocrine IL-7 secretion has not yet been described. Interestingly, using T-ALL cell lines, primary and patient-derived xenotransplanted (PDX) T-ALL cells, we demonstrate that T-ALL cells produce IL-7 whereas normal T cells do not. Finally, using knock down of IL7 gene in T-ALL cells, we describe to what extent IL-7 autocrine secretion is involved in the T-ALL cells propagation in bone marrow and how it affects the number of leukemia-initiating cells in PDX mice. Together, these results demonstrate how the autocrine production of the IL-7 cytokine mediated by T-ALL cells can be involved in the oncogenic development of T-ALL and offer novel insights into T-ALL spreading.


Subject(s)
Autocrine Communication , Bone Marrow/immunology , Interleukin-7/biosynthesis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/immunology , Animals , Apoptosis , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Blood ; 133(21): 2291-2304, 2019 05 23.
Article in English | MEDLINE | ID: mdl-30796021

ABSTRACT

Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Subject(s)
Antigens, CD1/immunology , Drug Resistance, Neoplasm/immunology , Immunotherapy, Adoptive , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen/immunology , Animals , Humans , Jurkat Cells , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Xenograft Model Antitumor Assays
12.
Blood Adv ; 1(12): 733-747, 2017 May 09.
Article in English | MEDLINE | ID: mdl-29296717

ABSTRACT

The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)-positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFß genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development.

13.
Blood Adv ; 1(20): 1760-1772, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29296822

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) expands in various bone marrow (BM) sites of the body. We investigated whether different BM sites could differently modulate T-ALL propagation using in vivo animal models. We observed that mouse and human T-ALL develop slowly in the BM of tail vertebrae compared with the BM from thorax vertebrae. T-ALL recovered from tail BM displays lower cell-surface marker expression and decreased metabolism and cell-cycle progression, demonstrating a dormancy phenotype. Functionally, tail-derived T-ALL exhibit a deficient short-term ex vivo growth and a delayed in vivo propagation. These features are noncell-autonomous because T-ALL from tail and thorax shares identical genomic abnormalities and functional disparities disappear in vivo and in prolonged in vitro assays. Importantly tail-derived T-ALL displays higher intrinsic resistance to cell-cycle-related drugs (ie, vincristine sulfate and cytarabine). Of note, T-ALL recovered from gonadal adipose tissues or from cocultures with adipocytes shares metabolic, cell-cycle, and phenotypic or chemoresistance features, with tail-derived T-ALL suggesting adipocytes may participate in the tail BM imprints on T-ALL. Altogether these results demonstrate that BM sites differentially orchestrate T-ALL propagation stamping specific features to leukemic cells such as quiescence and decreased response to cell-cycle-dependent chemotherapy.

14.
Cell Stem Cell ; 15(3): 376-391, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25042701

ABSTRACT

Despite progress in identifying the cellular composition of hematopoietic stem/progenitor cell (HSPC) niches, little is known about the molecular requirements of HSPC support. To address this issue, we used a panel of six recognized HSPC-supportive stromal lines and less-supportive counterparts originating from embryonic and adult hematopoietic sites. Through comprehensive transcriptomic meta-analyses, we identified 481 mRNAs and 17 microRNAs organized in a modular network implicated in paracrine signaling. Further inclusion of 18 additional cell strains demonstrated that this mRNA subset was predictive of HSPC support. Our gene set contains most known HSPC regulators as well as a number of unexpected ones, such as Pax9 and Ccdc80, as validated by functional studies in zebrafish embryos. In sum, our approach has identified the core molecular network required for HSPC support. These cues, along with a searchable web resource, will inform ongoing efforts to instruct HSPC ex vivo amplification and formation from pluripotent precursors.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Stem Cell Niche/genetics , Systems Biology/methods , Animals , Cell Line , Embryo, Nonmammalian/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Signal Transduction , Stromal Cells/metabolism , Transcriptome/genetics , Zebrafish/embryology
15.
EMBO Mol Med ; 6(6): 821-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24778454

ABSTRACT

Development of novel therapies is critical for T-cell acute leukaemia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activation and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleukin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xenografted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development.


Subject(s)
Interleukin-18/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Stromal Cells/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Line , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Leukemic , Gene Silencing , Humans , Interleukin-18/blood , Interleukin-18/genetics , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred NOD , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Stromal Cells/cytology , Stromal Cells/metabolism , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
16.
J Clin Invest ; 124(2): 644-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24401270

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug's antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.


Subject(s)
Apoptosis , Phenothiazines/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Phosphatase 2/metabolism , Animals , Animals, Genetically Modified , Cell Line, Tumor , Cell Survival , Chromatography, Affinity , Disease Models, Animal , Dopamine Antagonists/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mass Spectrometry , Mice , Perphenazine/chemistry , Phosphorylation , Pigmentation , Proteomics , Receptors, Notch/metabolism , Time Factors , Zebrafish
17.
Arthritis Rheum ; 64(4): 1069-81, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22006509

ABSTRACT

OBJECTIVE: Adrenomedullin(22-52) is a truncated peptide derived from adrenomedullin, a growth factor with antiapoptotic and immunoregulatory properties. It can act as an agonist or an antagonist depending on cell type. Its in vivo effects are unknown, but adrenomedullin(22-52) could possess immunomodulatory properties. This study was undertaken to evaluate the effect of adrenomedullin(22-52) in a mouse model of arthritis. METHODS: DBA/1 mice with collagen-induced arthritis (CIA) were treated with 1.2 µg/gm adrenomedullin(22-52) , adrenomedullin, or saline at arthritis onset. Bone mineral density was measured at the beginning of the experiment and when mice were killed. Mouse joints were processed for histologic analysis and protein studies, and spleens were examined for Treg cell expression. Cytokine expression was studied in mouse joint tissue and serum. RESULTS: In mice with CIA, adrenomedullin and adrenomedullin(22-52) reduced clinical and histologic arthritis scores and shifted the pattern of articular and systemic cytokine expression from Th1 to Th2, as compared to untreated mice with CIA (controls). Tumor necrosis factor α, interleukin-6 (IL-6), and IL-17A levels were significantly decreased in the joints of mice with CIA treated with adrenomedullin or adrenomedullin(22-52) as compared to controls, whereas IL-4 and IL-10 levels were increased. Adrenomedullin(22-52) was more effective than adrenomedullin in modulating cytokine content and enhanced Treg cell function without changing Treg cell expression compared to controls. Adrenomedullin receptor binding and transcriptional adrenomedullin receptor expression were markedly increased in joints from controls, whereas adrenomedullin receptor binding was considerably decreased in treated animals. Mice with CIA treated with adrenomedullin or adrenomedullin(22-52) had considerably fewer apoptotic chondrocytes and diminished cartilage degradation. Adrenomedullin(22-52) completely prevented systemic bone loss by preserving osteoblastic activity, but without changes in osteoclastic activity. CONCLUSION: Our findings indicate that adrenomedullin(22-52) , which has no vasoactive or tumor-inducing effects, is a potent antiinflammatory and bone-protective agent in this arthritis model.


Subject(s)
Adrenomedullin/therapeutic use , Arthritis, Experimental/drug therapy , Bone Resorption/drug therapy , Inflammation/drug therapy , Joints/drug effects , Peptide Fragments/therapeutic use , Adrenomedullin/administration & dosage , Animals , Apoptosis/drug effects , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Bone Resorption/metabolism , Bone Resorption/pathology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/pathology , Joints/metabolism , Joints/pathology , Male , Mice , Peptide Fragments/administration & dosage , Receptors, Adrenomedullin/metabolism , Severity of Illness Index
18.
Arthritis Res Ther ; 12(5): R190, 2010.
Article in English | MEDLINE | ID: mdl-20942979

ABSTRACT

INTRODUCTION: Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins. METHODS: FLSs were isolated from synovial tissues from RA and osteoarthritis (OA) patients. Plates were coated overnight with the ECM proteins vitronectin, fibronectin, and type I collagen (Coll.I). Adrenomedullin was used as a soluble FLS ligand before plating. We tested interactions with the adrenomedullin receptor antagonist (22-52)adrenomedullin and with the protein kinase A (PKA) inhibitor H-89, and inhibition of co-receptor RAMP-2 by siRNA. Cell adhesion was measured by using color densitometry. Activation of α2 and ß1 integrins was evaluated by fluorescent microscopy; integrin inhibition, by RGD peptides; and the talin-integrin interaction, by immunoprecipitation (IP). RESULTS: Adrenomedullin specifically increased RA-FLS adhesion to vitronectin, fibronectin, and Coll.I; no such effect was found for OA-FLS adhesion. Basal or adrenomedullin-stimulated RA-FLS adhesion was inhibited by (22-52)adrenomedullin, H-89, and RAMP-2 siRNA. Adrenomedullin-stimulated adhesion was inhibited by RGD peptides, and associated with α2 and ß1 integrin activation. This activation was shown with IP to be related to an integrin-talin interaction and was significantly decreased by (22-52)adrenomedullin. CONCLUSIONS: Adrenomedullin-stimulated RA-FLS adhesion was specific for ECM proteins and mediated by α2 and ß1 integrins. This effect of adrenomedullin was dependent on adrenomedullin receptors. These results support a new role for adrenomedullin in rheumatoid synovial fibroblast pathobiology.


Subject(s)
Adrenomedullin/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Integrins/metabolism , Synovial Membrane/metabolism , Blotting, Western , Cell Adhesion , Humans , Immunoprecipitation , Microscopy, Fluorescence , RNA, Small Interfering , Synovial Membrane/cytology , Up-Regulation
19.
Am J Physiol Endocrinol Metab ; 298(2): E245-56, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19920216

ABSTRACT

Wnt/beta-catenin signaling is critical for a variety of fundamental cellular processes. Here, we investigated the implication of the Wnt/beta-catenin signaling in the in vivo regulation of beta-cell growth and regeneration in normal and diabetic rats. To this aim, TCF7L2, the distal effector of the canonical Wnt pathway, was knocked down in groups of normal and diabetic rats by the use of specific antisense morpholino-oligonucleotides. In other groups of diabetic rats, the Wnt/beta-catenin pathway was activated by the inhibition of its negative regulator GSK-3beta. GSK-3beta was inactivated by either LiCl or anti-GSK-3beta oligonucleotides. The beta-cell mass was evaluated by morphometry. beta-cell proliferation was assessed in vivo and in vitro by BrdU incorporation method. In vivo beta-cell neogenesis was estimated by the evaluation of PDX1-positive ductal cells and GLUT2-positive ductal cells and the number of beta cells budding from the ducts. We showed that the in vivo disruption of the canonical Wnt pathway resulted in the alteration of normal and compensatory growth of beta-cells mainly through the inhibition of beta-cell proliferation. Conversely, activation of the Wnt pathway through the inhibition of GSK-3beta had a significant stimulatory effect on beta-cell regeneration in diabetic rats. In vitro, GSK-3beta inactivation resulted in the stimulation of beta-cell proliferation. This was mediated by the stabilization of beta-catenin and the induction of cyclin D. Taken together, our results demonstrate the involvement of the canonical Wnt signaling in the neonatal regulation of normal and regenerative growth of pancreatic beta-cells. Moreover, we provide evidence that activation of this pathway by pharmacological maneuvers can efficiently improve beta-cell regeneration in diabetic rats. These findings might have potential clinical applications in the regenerative therapy of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Glycogen Synthase Kinase 3/metabolism , Insulin-Secreting Cells/metabolism , TCF Transcription Factors/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Animals, Newborn/growth & development , Cell Proliferation , Cells, Cultured , Diabetes Mellitus, Experimental/pathology , Female , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta , Insulin-Secreting Cells/cytology , Male , Oligonucleotides, Antisense , Pancreas/cytology , Pancreas/metabolism , Rats , Rats, Wistar , Second Messenger Systems/physiology , Signal Transduction/physiology , Streptozocin , TCF Transcription Factors/genetics , Transcription Factor 7-Like 2 Protein
20.
PLoS One ; 4(3): e4734, 2009.
Article in English | MEDLINE | ID: mdl-19266047

ABSTRACT

BACKGROUND: Keratinocyte growth factor (KGF; palifermin) is a growth factor with a high degree of specificity for epithelial cells. KGF is an important effector of epithelial growth and tissue homeostasis in various organs including the pancreas. Here we investigated the intracellular signaling pathways involved in the mediation of pancreatic ductal cell proliferation and differentiation induced by exogenous KGF during beta-cell regeneration in diabetic rat. METHODOLOGY AND RESULTS: In vitro and in vivo duct cell proliferation was measured by BrdU incorporation assay. The implication of MAPK-ERK1/2 in the mediation of KGF-induced cell proliferation was determined by inactivation of this pathway, using the pharmacological inhibitor or antisense morpholino-oligonucleotides against MEK1. In vivo KGF-induced duct cell differentiation was assessed by the immunolocalization of PDX1 and Glut2 in ductal cells and the implication of PI3K/AKT in this process was investigated. We showed that KGF exerted a potent mitogenic effect on ductal cells. Both in vitro and in vivo, its effect on cell proliferation was mediated through the activation of ERK1/2 as evidenced by the abolition of duct cell proliferation in the context of MEK/ERK inactivation. In vivo, KGF treatment triggered ductal cell differentiation as revealed by the expression of PDX1 and Glut2 in a subpopulation of ductal cells via a PI3K-dependent mechanism. CONCLUSION: Here we show that KGF promotes beta-cell regeneration by stimulating duct cell proliferation in vivo. Moreover, we demonstrated for the first time that KGF directly induces the expression of PDX1 in some ductal cells thus inducing beta-cell neogenesis. We further explored the molecular mechanisms involved in these processes and showed that the effects of KGF on duct cell proliferation are mediated by the MEK-ERK1/2 pathway, while the KGF-induced cell differentiation is mediated by the PI3K/AKT pathway. These findings might have important implications for the in vivo induction of duct-to-beta cell neogenesis in patients with beta-cell deficiency.


Subject(s)
Cell Differentiation , Cell Proliferation , Fibroblast Growth Factor 7/metabolism , Homeodomain Proteins/genetics , Pancreatic Ducts/cytology , Signal Transduction , Trans-Activators/genetics , Animals , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...