Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Neuroscience ; 186: 1-12, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21557989

ABSTRACT

We investigated the role of the vesicular acetylcholine transporter in the mechanism of non-quantal (non-vesicular) secretion of neurotransmitter in the neuromuscular synapse of the rat diaphragm muscle. Non-quantal secretion was estimated electrophysiologically by the amplitude of end-plate hyperpolarization after inhibition of cholinesterase and nicotinic receptors (H-effect) or measured by the optical detection of acetylcholine in the bathing solution. It was shown that 1 mM methyl-ß-cyclodextrin (MCD) reduced both endocytosis and, to much lesser extent, exocytosis of synaptic vesicles (SV) thereby increasing non-quantal secretion of acetylcholine with a concurrent decrease in axoplasm pH. During high-frequency stimulation of the motor nerve, that substantially increases vesicles exocytosis, the non-quantal secretion was further enhanced if the endocytosis of SV was blocked by MCD. In contrast, non-quantal secretion of acetylcholine did not increase when the MCD-treated neuromuscular preparations were superfused with either vesamicol, an inhibitor of vesicular transporter of acetylcholine, or sodium propionate, which decreases intracellular pH. These results suggest that the proton-dependent, vesamicol-sensitive vesicular transporters of acetylcholine, which become inserted into the presynaptic membrane during SV exocytosis and removed during endocytotic recycling of SV, play the major role in the process of non-quantal secretion of neurotransmitter.


Subject(s)
Acetylcholine/metabolism , Endocytosis/physiology , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Vesicular Acetylcholine Transport Proteins/physiology , beta-Cyclodextrins/pharmacology , Animals , Endocytosis/drug effects , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neuromuscular Junction/drug effects , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Up-Regulation/drug effects , Up-Regulation/physiology , Vesicular Acetylcholine Transport Proteins/antagonists & inhibitors
2.
Bull Exp Biol Med ; 147(5): 583-6, 2009 May.
Article in English, Russian | MEDLINE | ID: mdl-19907744

ABSTRACT

Exogenous adenosine triphosphoric acid produces a biphasic effect on the resting membrane potential of muscle fibers in rat diaphragm. Depolarization of the sarcolemma observed 10 min after application of adenosine triphosphoric acid results from activation of Na(+)/K(+)/2Cl(-) cotransport. The increase in chloride cotransport is related to activation of postsynaptic P2Y receptors and protein kinase C. Repolarization of the membrane develops 40 min after treatment with adenosine triphosphoric acid and after 50 min the resting membrane potential almost returns the control level. This increase in the resting membrane potential of the sarcolemma is probably associated with activation of the Na(+)/K(+) pump and increase in membrane permeability for chlorine ions in response to long-term activity of Cl(-) cotransport. Thus, adenosine triphosphoric acid co-secreted with acetylcholine in the neuromuscular synapse probably plays a role in the regulation resting membrane potential and cell volume of muscle fibers.


Subject(s)
Adenosine Triphosphate/pharmacology , Chlorides/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Potassium/metabolism , Sodium/metabolism , Acetylcholine/metabolism , Animals , Biological Transport/drug effects , Male , Membrane Potentials/drug effects , Protein Kinase C/metabolism , Rats , Receptors, Purinergic P2/metabolism , Sarcolemma/drug effects , Sarcolemma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...