Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Toxicol ; 3(2): 73-5, 2010 Jun.
Article in English | MEDLINE | ID: mdl-21217876

ABSTRACT

Toxicity of perfluorinated carboxylic acids with carbon chain C(8) to C(12) were tested with oligochaeta Tubifex tubifex. Toxicity was evaluated as the exposure time ET(50) from onset of damage of the oligochaeta in saturated aqueous solutions. The ET(50) fluctuated between 25 and 257 minutes. No statistically significant difference was found among the C(8), C(9) and C(12) acids (ET(50) between 143 and 257 minutes with large standard deviation). The acids with carbon chain C(10) and C(11) induced the effect significantly quicker (25 to 47 minutes). No acute toxicity measured in the three-minute test was observed in any case.

2.
Interdiscip Toxicol ; 3(4): 137-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21331180

ABSTRACT

Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose.

3.
Toxicol In Vitro ; 24(1): 240-4, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19735719

ABSTRACT

Primary rat hepatocytes were used to test acute toxicities of 16 neutral aliphatic alcohols, ketones and esters. Their effects on cell viability and metabolic function (ureogenesis, i.e. biotransformation of ornithine to urea) were measured and expressed as EC50 values. Log EC50 values from both tests correlated with the log partition coefficients for the chemicals between n-octanol and water and log P(ow)-based QSAR models were derived. Log EC50 (viability) tightly correlates with log EC50 (ureogenesis): log EC50 (viability)=0.91 log EC50 (ureogenesis)+0.06. Each of these toxic indices can be substituted by the other one. The toxic indices for both cell viability and metabolic disorder can be estimated using log EC50 for movement inhibition in the oligochaete Tubifex tubifex and the respective QSAR equation. It eliminates a usage of rats. Their correlations were proved and justified.


Subject(s)
Hepatocytes/drug effects , Quantitative Structure-Activity Relationship , Toxicology/methods , Animals , Cell Separation , Cells, Cultured , Chemistry, Physical , Coloring Agents , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Indicators and Reagents , Male , Predictive Value of Tests , Rats , Rats, Wistar , Solutions , Trypan Blue , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...