Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Electron ; 5(6): 356-366, 2022.
Article in English | MEDLINE | ID: mdl-35783488

ABSTRACT

Electronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers originating from the semiconductors interact with defects in the surrounding insulators. In field-effect transistors, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation. Here, we show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning. We deliberately tune the Fermi level of the channel to maximize the energy distance between the charge carriers in the channel and the defect bands in the amorphous aluminium gate oxide. Charge trapping is highly sensitive to the energetic alignment of the Fermi level of the channel with the defect band in the insulator, and thus, our approach minimizes the amount of electrically active border traps without the need to reduce the total number of traps in the insulator.

3.
Adv Mater ; 34(48): e2108469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35075681

ABSTRACT

The design, fabrication, and characterization of wafer-scale, zero-bias power detectors based on 2D MoS2 field-effect transistors (FETs) are demonstrated. The MoS2 FETs are fabricated using a wafer-scale process on 8 µm-thick polyimide film, which, in principle, serves as a flexible substrate. The performances of two chemical vapor deposition MoS2 sheets, grown with different processes and showing different thicknesses, are analyzed and compared from the single device fabrication and characterization steps to the circuit level. The power-detector prototypes exploit the nonlinearity of the transistors above the cut-off frequency of the devices. The proposed detectors are designed employing a transistor model based on measurement results. The fabricated circuits operate in the Ku-band between 12 and 18 GHz, with a demonstrated voltage responsivity of 45 V W-1 at 18 GHz in the case of monolayer MoS2 and 104 V W-1 at 16 GHz in the case of multilayer MoS2 , both achieved without applied DC bias. They are the best-performing power detectors fabricated on flexible substrate reported to date. The measured dynamic range exceeds 30 dB, outperforming other semiconductor technologies like silicon complementary metal-oxide-semiconductor circuits and GaAs Schottky diodes.

4.
Adv Mater ; 34(48): e2108473, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34957614

ABSTRACT

Over the past two decades, research on 2D materials has received much interest. Graphene is the most promising candidate regarding high-frequency applications thus far due to is high carrier mobility. Here, the research about the employment of graphene in micro- and millimeter-wave circuits is reviewed. The review starts with the different methodologies to grow and transfer graphene, before discussing the way graphene-based field-effect-transistors (GFETs) and diodes are built. A review on different approaches for realizing these devices is provided before discussing the employment of both GFETs and graphene diodes in different micro- and millimeter-wave circuits, showing the possibilities but also the limitations of this 2D material for high-frequency applications.

5.
Nano Lett ; 21(22): 9365-9373, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34734723

ABSTRACT

Dominating electron-electron scattering enables viscous electron flow exhibiting hydrodynamic current density patterns, such as Poiseuille profiles or vortices. The viscous regime has recently been observed in graphene by nonlocal transport experiments and mapping of the Poiseuille profile. Herein, we probe the current-induced surface potential maps of graphene field-effect transistors with moderate mobility using scanning probe microscopy at room temperature. We discover micrometer-sized large areas appearing close to charge neutrality that show current-induced electric fields opposing the externally applied field. By estimating the local scattering lengths from the gate dependence of local in-plane electric fields, we find that electron-electron scattering dominates in these areas as expected for viscous flow. Moreover, we suppress the inverted fields by artificially decreasing the electron-disorder scattering length via mild ion bombardment. These results imply that viscous electron flow is omnipresent in graphene devices, even at moderate mobility.

6.
Nat Commun ; 12(1): 917, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568669

ABSTRACT

Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to [Formula: see text]. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.

7.
ACS Nano ; 14(9): 11897-11905, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32790352

ABSTRACT

Graphene-based photodetectors have shown responsivities up to 108 A/W and photoconductive gains up to 108 electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity to graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semimetallic nature of graphene, the readout requires dark currents of hundreds of microamperes up to milliamperes, leading to high power consumption needed for the device operation. Here, we propose a different approach for highly responsive graphene-based photodetectors with orders of magnitude lower dark-current levels. A shift of the graphene chemical potential caused by light absorption in a layer of colloidal quantum dots induces a variation of the current flowing across a metal-insulator-graphene diode structure. Owing to the low density of states of graphene near the neutrality point, the light-induced shift in chemical potential can be relatively large, dramatically changing the amount of current flowing across the insulating barrier and giving rise to an alternative gain mechanism. This readout requires dark currents of hundreds of nanoamperes up to a few microamperes, orders of magnitude lower than that of other graphene-based photodetectors, while keeping responsivities of ∼70 A/W in the infrared, almost 2 orders of magnitude higher than that of established germanium on silicon and indium gallium arsenide infrared photodetectors. This makes the device appealing for applications where high responsivity and low power consumption are required.

8.
Sci Rep ; 9(1): 18059, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792254

ABSTRACT

We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: (1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. (2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. (3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to [Formula: see text] and sensitivity up to 0.55 V/VT was found for Hall sensors working on flexible polyimide (PI) substrates. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...