Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 34(8): 41, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530973

ABSTRACT

The paper presents the results of the experimental and analytical study of targeted drug-loaded polymer-based microspheres made from blend polymer of polylactic-co-glycolic acid and polycaprolactone (PLGA-PCL) for targeted and localized cancer drug delivery. In vitro sustained release with detailed thermodynamically driven drug release kinetics, over a period of three months using encapsulated targeted drugs (prodigiosin-EphA2 or paclitaxel-EphA2) and control drugs [Prodigiosin (PGS), and paclitaxel (PTX)] were studied. Results from in vitro study showed a sustained and localized drug release that is well-characterized by non-Fickian Korsmeyer-Peppas kinetics model over the range of temperatures of 37 °C (body temperature), 41 °C, and 44 °C (hyperthermic temperatures). The in vitro alamar blue, and flow cytometry assays in the presence of the different drug-loaded polymer formulations resulted to cell death and cytotoxicity that was evidence through cell inhibition and late apoptosis on triple negative breast cancer (TNBC) cells (MDA-MB 231). In vivo studies carried out on groups of 4-week-old athymic nude mice that were induced with subcutaneous TNBC, showed that the localized release of the EphA2-conjugated drugs was effective in complete elimination of residual tumor after local surgical resection. Finally, ex vivo histopathological analysis carried out on the euthanized mice revealed no cytotoxicity and absence of breast cancer metastases in the liver, kidney, and lungs 12 weeks after treatment. The implications of the results are then discussed for the development of encapsulated EphA2-conjugated drugs formulation in the specific targeting, localized, and sustain drug release for the elimination of local recurred TNBC tumors after surgical resection.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer , Prodigiosin , Microspheres , Mice, Nude , Cell Line, Tumor , Paclitaxel/pharmacology , Polymers
2.
J Mech Behav Biomed Mater ; 136: 105461, 2022 12.
Article in English | MEDLINE | ID: mdl-36195050

ABSTRACT

The adhesive interactions between molecular recognition units (such as specific peptides and antibodies) and antigens or other receptors on the surfaces of tumors are of great value in the design of targeted nanoparticles and drugs for the detection and treatment of specific cancers. In this paper, we present the results of a combined experimental and theoretical study of the adhesion between Luteinizing Hormone Releasing Hormone (LHRH)/Epherin type A2 (EphA2)-AFM coated tips and LHRH/EphA2 receptors that are overexpressed on the surfaces of human Triple Negative Breast Cancer (TNBC) tissues of different histological grades. Following a histochemical and immuno-histological study of human tissue extracts, the receptor overexpression, and their distributions are characterized using Immunohistochemistry (IHC), Immunofluorescence (IF), and a combination of fluorescence microscopy and confocal microscopy. The adhesion forces between LHRH or EphA2 and human TNBC breast tissues are measured using force microscopy techniques that account for the potential effects of capillary forces due to the presence of water vapor. The corresponding adhesion energies are also determined using adhesion theory. The pull off forces and adhesion energies associated with higher grades of TNBC are shown to be greater than those associated with normal/non-tumorigenic human breast tissues, which were studied as controls. The observed increase in adhesion forces and adhesion energies are also correlated with the increasing incidence of LHRH/EphA2 receptors at higher grades of TNBC. The implications of the results are discussed for the development of targeted nanostructures for the detection and treatment of TNBC.


Subject(s)
Gonadotropin-Releasing Hormone , Receptors, LHRH , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Gonadotropin-Releasing Hormone/chemistry , Nanoparticles , Receptors, LHRH/chemistry , Triple Negative Breast Neoplasms/pathology
3.
Biomater Adv ; 136: 212801, 2022 May.
Article in English | MEDLINE | ID: mdl-35929297

ABSTRACT

This paper presents the results of an experimental and computational study of the adhesion of triptorelin-conjugated PEG-coated biosynthesized gold nanoparticles (GNP-PEG-TRP) to triple-negative breast cancer (TNBC) cells. The adhesion is studied at the nanoscale using a combination of atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. The AFM measurements showed that the triptorelin-functionalized gold nanoparticles (GNP-TRP and GNP-PEG-TRP) have higher adhesion to triple-negative breast cancer cells (TNBC) than non-tumorigenic breast cells. The increased adhesion of GNP-TRP and GNP-PEG-TRP to TNBC is also attributed to the overexpression of LHRH receptors on the surfaces of both TNBC. Finally, the molecular dynamics model reveals insights into the effects of receptor density, molecular configuration, and receptor-ligand docking characteristics on the interactions of triptorelin-functionalized PEG-coated gold nanoparticles with TNBC. A three to nine-fold increase in the adhesion is predicted between triptorelin-functionalized PEG-coated gold nanoparticles and TNBC cells. The implications of the results are then discussed for the specific targeting of TNBC.


Subject(s)
Metal Nanoparticles , Triple Negative Breast Neoplasms , Cell Line, Tumor , Gold/pharmacology , Humans , Ligands , Triple Negative Breast Neoplasms/drug therapy , Triptorelin Pamoate/pharmacology
4.
J Biomed Mater Res A ; 108(12): 2421-2434, 2020 12.
Article in English | MEDLINE | ID: mdl-32362069

ABSTRACT

This article presents the results of the combined effects of RGD (arginine-glycine-aspartate) functionalization and mechanical stimulation on osteogenesis that could lead to the development of implantable robust tissue-engineered mineralized constructs. Porous polycaprolactone/hydroxyapatite (PCL/HA) scaffolds are functionalized with RGD-C (arginine-glycine-aspartate-cysteine) peptide. The effects of RGD functionalization are then explored on human fetal osteoblast cell adhesion, proliferation, osteogenic differentiation (alkaline phosphatase activity), extracellular matrix (ECM) production, and mineralization over 28 days. The effects of RGD functionalization followed by mechanical stimulation with a cyclic fluid shear stress of 3.93 mPa in a perfusion bioreactor are also elucidated. The tensile properties (Young's moduli and ultimate tensile strengths) of the cell-laden scaffolds are measured at different stages of cell culture to understand how the mechanical properties of the tissue-engineered structures evolve. RGD functionalization is shown to promote initial cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and ECM production. However, it does not significantly affect mineralization and tensile properties. Mechanical stimulation after RGD functionalization is shown to further improve the ALP activity, ECM production, mineralization, and tensile properties, but not cell proliferation. The results suggest that combined RGD functionalization and mechanical stimulation of cell-laden PCL/HA scaffolds can be used to accelerate the regeneration of robust bioengineered bone structures.


Subject(s)
Durapatite/chemistry , Oligopeptides/chemistry , Osteoblasts/metabolism , Osteogenesis , Polyesters/chemistry , Tissue Scaffolds/chemistry , Cell Line , Humans , Stress, Mechanical
5.
J Mech Behav Biomed Mater ; 68: 276-286, 2017 04.
Article in English | MEDLINE | ID: mdl-28226310

ABSTRACT

This paper presents the results of an experimental study of the adhesion forces between components of model conjugated magnetite nanoparticle systems for improved selectivity in the specific targeting of triple negative breast cancer. Adhesion forces between chemically synthesized magnetite nanoparticles (CMNPs), biosynthesized magnetite nanoparticles (BMNPs), as well as their conjugated systems and triple negative breast cancer cells (MDA-MB-231) or normal breast cells (MCF 10A) are elucidated at a nanoscale. In all cases, the BMNPs had higher adhesion forces (to breast cancer cells and normal breast cells) than CMNPs. The adhesion of LHRH-conjugated BMNPs or BSA-conjugated BMNPs to cancer cells is shown to be about 6 times to that of normal breast cells. The increase in adhesion forces between luteinizing hormone-releasing hormone, LHRH- or EphA2, a breast specific antibody(BSA)-conjugated BMNPs to breast cancer cells is attributed to van der Waals interactions between the peptides/antibodies from the conjugated nanoparticles and the over-expressed receptors (revealed using immunofluorescence staining) on the surfaces of the breast cancer. The implications of the results are discussed for the selectivity and specificity of breast cancer targeting by ligand-conjugated BMNPs.


Subject(s)
Drug Delivery Systems , Magnetite Nanoparticles/chemistry , Nanoconjugates/chemistry , Triple Negative Breast Neoplasms/metabolism , Adhesiveness , Cell Line, Tumor , Gonadotropin-Releasing Hormone/chemistry , Humans , Receptor, EphA2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...