Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 398: 133921, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35969988

ABSTRACT

Nano-phytosomes are lipid-based nano-carriers and rapidly growing technology for products containing phytochemicals. In this study, pomegranate peel extract (PPE) loaded nanophytosomes (NP) were prepared with phosphatidylcholine (PC) based on thin layer hydration method. The characterization of NP such as entrapment efficiency (EE), particle size, poly-dispersity index (PDI), ζ-potential and microstructural properties was studied and in vitro bioaccessibility and storage stability of bioactive properties were investigated. The highest EE was determined as 94.99 %, indicating a unique ability as nano-carrier. PPE-loaded NPs showed good characteristics, such as lower PDI values (<0.5), lower particle size (166.70-144.40 nm), and spherical shape of microstructure. All NP complexes showed significant bioaccessibility with TPC, CUPRAC, and ABTS values >50 % in the intestinal medium. The lowest TPC and color difference (ΔE) during 28 days of storage were found at 4 °C, although all NP samples showed better stability at all storage temperatures up to 21 days.


Subject(s)
Pomegranate , Particle Size , Phosphatidylcholines/chemistry , Phytochemicals , Plant Extracts/chemistry
2.
Int J Biol Macromol ; 227: 1027-1037, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36462592

ABSTRACT

Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.


Subject(s)
Zein , Zein/chemistry , Tensile Strength , Food Packaging/methods , Steam , Polyesters/chemistry , Permeability , Oxygen/chemistry
3.
Foods ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36496593

ABSTRACT

"Boba balls" or pearls have recently gained popularity for beverages or food toppings. "Boba balls" could be developed into functional foods by the encapsulation of bioactive compounds. In this study, gelatin/sodium alginate composite "Boba balls" enriched with pomegranate peel extract (PPE) at different concentrations (0, 1, 2, and 3%) were prepared. They were characterized in terms of physical, rheological, textural, morphological, and sensory properties, as well as in vitro digestion, bio-accessibility, and release kinetic of PPE. Adding PPE improved the "Boba" mix's viscoelasticity and decreased the "Boba balls"' hardness. The increasing PPE ratio significantly (p < 0.05) increased the antioxidant capacity and total phenolic content. The addition of PPE preserved the spherical shape of the "Boba balls", and as the PPE ratio increased, new junction zones were observed in SEM images. The in vitro digestibility of PPE was significantly (p < 0.05) improved by preserving PPE from the mouth and gastric medium, and "Boba balls" showed the highest release and bio-accessibility in the intestinal medium. Consequently, PPE as a by-product could be successfully used at 2% concentration for enhancing the functionality and bio-accessibility of "Boba balls" without affecting sensory properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...